
 

The evolution of FPS games controllers: how use 
progressively shaped their present design 

 
 
Kostas GKIKAS†         Dimitris NATHANAEL†           Nicolas MARMARAS‡  

dpsd00082@aegean.gr                  nathand@aegean.gr                 marmaras@central.ntua.gr  
 

†University of the Aegean – Department of product and systems design engineering  
‡National Technical University of Athens – ErgoU 

 
Ermoupolis, GR-84100, Greece 

 
Abstract 

First Person Shooter (FPS) is a genre of computer games with immense success over the last 
decade. The genre has evolved rapidly thanks to technological advances in 3D graphics and 
Artificial Intelligence to high levels of realism. However, its hardware interface has received, 
or so it seems, little attention; most expert players finding a conventional keyboard and mouse 
configuration as the best choice. In this paper we take a close look at the evolution of FPS 
controller configuration. We try to show that this historically evolved control configuration, 
although not optimum in any analytical sense, blends in an original way diverse and often 
conflicting ergonomic requirements. We conclude by suggesting that the sustainability of the 
keyboard-mouse as the FPS controller of choice is mainly due to its inherent plasticity. This 
plasticity has facilitated not only the continuous streamlining of the controller configuration 
per-se but has also significantly influenced the genre’s evolution as a whole. 
 
Keywords: FPS games, controllers, mapping, task-artefact cycle 
 

1. Introduction 
The aim of human-computer interface design in general is to achieve high levels of 
usability. Usability is defined in ISO 9241-11 as “the extent to which a product can be 
used by specified users to achieve specified goals with effectiveness, efficiency and 
satisfaction in a specified context of use” [ISO (1998)]. However, play as an object of 
a human activity cannot be defined as accomplishment of a pre-specified set of goals 
[Koster (2004)]. Therefore nor efficiency, neither effectiveness, can be considered as 
critical dimensions in game interface design. In fact, the very concept of usability 
does not make much sense, at least in its common ISO 9241-11definition. Play, rather 
than task accomplishment can better be conceived as a balance between challenge and 
satisfaction. In play, contrary to work, if challenge levels (i.e. difficulty) fall below a 
certain level, satisfaction decreases as well. Thus, since players progressively become 

 

mailto:dpsd00082@aegean.gr
mailto:nathand@aegean.gr
mailto:marmaras@central.ntua.gr


11th Panhellenic Conference in Informatics 
 

 

38 

more competent, games need to provide more and more challenges to keep of the 
same level of satisfaction [Gee (2003)]. 

The need for continuous increase in the challenge levels is considered explicitly in the 
game industry. It is usually achieved (i) by allowing for different levels of play in the 
same game and (ii) by re-designing challenges in new versions of the game’s 
software. Common wisdom then suggests that games evolve by progressively altering 
their software to provide higher level and more diversified challenges. The hardware 
part of the games (i.e. the controller/s) is often not considered as having an important 
impact on this evolution. However, studying the evolution of FPS games we suggest a 
different picture.  

2. First Person Shooter Games 
First-person shooter (FPS) is a genre of computer and video games which is 
characterized by an on-screen view that simulates the in-game character's point of 
view and a focus on the use of handheld ranged weapons. They provide immersive, 
engaging, and highly interactive worlds that allow players to engage in behaviours 
similar to those in the real world. 

The modern FPS genre emerged at the point when home computers became 
sufficiently powerful to draw basic 3D graphics in real time. id Software's® 
Wolfenstein 3D® and Doom® are widely considered to be the breakthrough games of 
the genre. The latter, in particular, defined the genre so emphatically that FPS games 
were commonly referred to as "Doom clones" or "Doom-likes" for a significant 
period after its release. Other notable examples of the genre include Quake®, Unreal®, 
the Half-Life series®, Counter-Strike®, the Halo® series, etc. 

All FPSs feature the core gameplay elements of movement and shooting, but many 
variations exist, with different titles emphasising certain aspects of the gameplay. The 
lines between sub-genres are not distinct; but all FPS on the PC utilise a combination 
of QWERTY keyboard and mouse as a means of controlling the game. Usually FPS 
control schemes are fully customisable within the game. One hand uses the mouse, 
which is used for free look (also known as mouse look), aiming and turning the 
player's view horizontally and vertically. 

2.1 Historical evolution of FPS control scheme 
The movement functions were the first functions that were mapped on the keyboard 
when the FPS games began to spread in the PC's in the 90's. Those functions were 
placed on the arrows keys (on the right side of the keyboard) and provided digital 
movement forwards, backwards, and turning left and right. This was also the way of 
aiming with the gun. There was no up-down feature so all the enemies were at the 
same level (eye-level). The demand for movement was still pretty basic and the “fire” 



Human-Computer Interaction 39 

function was at the left Ctrl key so as to be used with the left hand. This was 
essentially a two-dimensional world where the player’s avatar could move and shoot 
in a one level plane. 

The situation changed completely as soon as the mouse appeared near the keyboard. 
New potentials were given to the game designers and the “free look” arose and stayed 
ever since. Free look (also known as mouse look) is a term that describes the ability to 
move the mouse to control the avatar’s view in any type of computer and video 
games. Controlling this way the avatar's view, meant that the head became 
autonomous as far as the up and down view is concerned but the left and right view 
controlled also the orientation of the whole body. It was certainly one of the most 
significant technical breakthroughs of mid-1990s first-person perspective games. 

However, the arrow keys seemed to face a number of design problems with this 
change. First of all, for the left hand it was hard to use them because of their position 
on the right side of the keyboard and secondly new functions later added such as 
jumping and crouching were difficult to be placed near those remote keys. So another 
breakthrough happened almost right after the introduction of the mouse look. The 
WASD mapping. Made popular by Quake®, WASD (also known as Was-duh, 
WSAD or ASDW) is a set of four keys on the left-hand side of a QWERTY or 
QWERTZ computer keyboard. W/S control forward and backward and A/D control 
sidewalk. This set of keys mimicked the arrow keys with the difference that they did 
not provide a turning feature, as the mouse now provided this. 

Thus, The addition of the mouse look also meant that i) the movement functions 
jumped to the left hand (to the WASD combination of keys, ii) the keys for left and 
right turn which were not needed any more changed function providing an additional 
feature: sidewalk. This allowed for a separation between movement and the avatar’s 
midsagittal plane’s orientation taking a further step towards a more realistic game 
play. The above changes did not only significantly improve movement and shooting 
performance and accuracy, but had a more pervading effect in the design of next 
generation games by introducing a true three dimensional environment. 

Also, the WASD placement contributed to a further development of FPS games. 
Additional functions were assigned to keys around the WASD for easy access by the 
left hand (e.g. Jump, Duck, Walk/Run etc). This positioning of the basic functions 
(more or less introduced with the release of Quake in 1995) remained stable until 
today with small variations among players.  

2.2 The present design 
Even though there is always some variation between different games and different 
players, modern FPS games share more or less the same general control scheme 
(Figure 1). This scheme might seem ad-hoc at first sight; however, if studied in detail 
it actually shows a deliberate effort to reconcile performance and ease of use subject 

 



11th Panhellenic Conference in Informatics 
 

 

40 

to the keyboard-mouse constraints. Although not optimum in any analytical sense, the 
adaptations, additions and alterations made over the years by developers and users 
have resulted in a non trivial result that seems to blend in an original way diverse and 
often conflicting ergonomic requirements. A number of examples are presented 
below. 

 
Figure 1. The default keyboard mapping for the game Counter Strike Source® 

Consistency between controls and functions. The movement functions (forward, back, 
left, right) are mapped on the “WASD” – or in some cases “ESDF” – following both 
i) a spatial metaphor of the actual movements in the virtual world, and ii) the 
topology of the three middle fingers on the keyboard (the middle being longer is 
assigned to W). These functions are used on a continuous basis (often in parallel) so 
the main interest of the designers was to enhance intuitive use and minimize finger 
strain. The switch from the arrow keys to the WASD did abandon the mapping at the 
semantic level but provided for the ability to use the large keys around the WASD 
area with the thump and little finger. This specific arrangement clearly favours 
sensorimotor appropriation and speed over compatibility at a reflective level. 

Frequency - Speed of Use. At FPS games there is exigent need for instant responses 
and repetition at the use of certain features like the pull of the trigger and the 
secondary function of the gun (usually the collimator or an alternative fire option) As 
we saw above the fire option was first mapped on the left Ctrl as it was manipulated 
by the left index and its corner position was easily accessed haptically. At that time 



Human-Computer Interaction 41 

there was no secondary fire option. The mouse of course changed the whole situation 
as the right hand took charge of the aiming and the two mouse buttons started being 
the primary and secondary fire functions. These changes are considered successful as 
i) the aiming through the mouse makes use of the most appropriated feature in GUIs 
i.e. the eye-hand coordination ii) the index and the middle finger are most capable of 
instant responses and repetitive strain. Also important is the task of switching 
between the carried weapons. At the beginning this function was performed by the 
numeric keys (1-9). This kind of mapping will be analyzed further down as it is 
considered primarily a semantic mapping. At the moment when a scroll wheel was 
added to the mouse though, the function of switching weapons was transferred there, 
but without being deleted from its original place. This redundancy in the switch 
weapon function enhanced learnability without cancelling speed of use. 

Proximity and Physical shape-size. As mentioned above, an important reason for 
shifting the movement controls over to the “WASD” was the need for more functions 
around the movement keys. Therefore, some important functions such as JUMP, 
DUCK and USE were assigned to keys around the WASD. Such keys are Shift, Ctrl, 
Space and E that due to their size and position are easily accessed by the small finger 
and the thumb. Nowadays, these functions are rarely subject to variations from game 
to game probably due to their appropriation by experienced players. 

Semantic mapping. The first use of this criterion has already been mentioned with the 
example of the numeric keys for selecting weapons. In that case the numbers on the 
keys correspond to the importance of the different weapons. Also, when additional 
functions were added (such as RELOAD, BUY and FLASHLIGHT) those not so 
often used functions were placed on proximal to WASD keys but whose letter 
symbols corresponded to the first letter of each function. So the keys R, B and F were 
assigned to Reload, Buy and Flashlight respectively acting mostly as a reminder for 
the player capitalizing on their respective symbols. Thus less frequently used 
functions tend to favour semantic mapping over other criteria. 

Critical Error avoidance. Error avoidance is an important reason for mapping certain 
functions in places where the left hand can hardly reach. Thus, functions such as 
“Report Bug” and “Select Team”, that disrupt the normal game flow, have been 
assigned to keys far from the working area (to F4 and M keys respectively) so as to 
prevent them from being accidentally pressed. 

No criterion. Several functions that arouse lately (such as communication options) 
have been randomly placed on the keyboard. It seems that designers and users have 
not yet devised an inventive key arrangement for them in the remaining – not already 
assigned – keys of the keyboard. Functions such as ”use voice communication”, 
“spray logo” and “buy equipment menu” were assigned to keys under no specific 
criterion, and this is probably why they tend to be subject to miss hits and other 
inconveniences (e.g. effort to locate and discriminate between them). 

 



11th Panhellenic Conference in Informatics 
 

 

42 

                                                

The requirements given in the examples above are neither exhaustive nor mutually 
excluding. They form part of a preliminary analysis which needs further development 
based on empirical evidence of actual use. 

A part of the list of assigned keys, functions, functional groups and criteria of 
assignment as judged by the authors is presented in Annex 1. 

2.3 The co-evolution between games, gamer strategies and control schemes 
From the analysis above it is evident that FPS game control schemes evolved with no 
overall plan. Indeed, at first sight the present input system looks like a compromise 
between, on the one hand the simplicity of using all-purpose input devices and on the 
other, an acceptable level of usability. This is true in a very pragmatic sense. At least 
for the movement control the left hand takes high strain, the three middle fingers 
(index, middle. ring) constantly upon the WASD, while the little finger and the thumb 
move up and down in order to control Jump, Duck and other functions. To a lay 
observer the above movement control scheme looks terribly awkward. However, 
almost all expert players prefer to use this instead of a dedicated controller (e.g. a 
gamepad1). An analytical HCI approach would suggest that it is easy to improve on it, 
and indeed it would be so if one decided to ignore that: 

a) There is a large existing expert player community that has developed 
sensorimotor skills comparable to these of a musical instrument player or an 
expert typewriter. Actually, one important aspect of game satisfaction for 
these people is the challenge of achieving mastery in these skills [Clanton 
(1998)]. 

b) The diverse challenges that the designers implement in the games have been 
progressively tailored to match the characteristics of the current control 
scheme. In other words the control scheme as artefact has shaped the task 
(Norman 1991). For example, the ever-increasing number of functions in the 
games is most probably connected to the fact that the keyboard provides 
abundant keys for assignment. 

c) The player community has historically shaped the games and continues to do 
so by experimenting with new tricks e.g. altering the control scheme, 
programming macro-functions etc. Such user interventions are in fact a part 
of the games’ ability to provide satisfaction. This is evidenced by 

 
1 A recent example is the release early in 2007 of a device that lets users connect a keyboard and mouse 
on the popular Xbox360™ console. This caused great upheaval in the online Xbox™ FPS community as 
there is great concern that it gives players using it an “unfair advantage”. Aiming with the mouse is 
considerably faster than with the analogue stick of the game pad and now the community is trying to find 
ways of dealing with this problem. 
 



Human-Computer Interaction 43 

international FPS tournaments where such interventions are accepted as 
integral part of a player’s skill [Tulathimutte (2004)]. 

The current FPS control scheme was never designed in the strict sense. It has emerged 
as a result of a mute dialogue between the players developing skills and interventions 
and designer induced challenges, subject to the keyboard – mouse constraints and 
affordances. For example when the mouse was introduced as the aiming and firing 
device, the pace and accuracy of the games had to de adjusted accordingly, in order to 
keep the challenge at an equal level as before. Also the adaptations progressively 
made by expert users to the interface (e.g. assigning different keys to functions as a 
result of game strategy) were retrospectively acknowledged by designers who re-
calibrated challenge levels and challenge types accordingly [Tulathimutte (2004)]. 
We may then see the history of FPS games as a co-evolution between user expertise 
and intervention, control scheme configuration and the challenges inbuilt in the 
games’ software. 

The FPS evolution is in fact a paradigmatic case of the task-artefact cycle as 
introduced by Carroll et al. (1991). The task-artefact cycle captures the idea that tasks 
and artefacts co-evolve. The cyclical relationship between the two can be described as 
follows: A given task sets requirements for the design of an artefact to help in the 
performance of the task. The resulting artefact in turn, creates new or unexpected 
possibilities or poses new constraints on the performance of the task. These 
possibilities and/or constraints often suggest a revision of the original task for which 
the artefact was made [Norman (1991)], [Bannon & Bødker (1991)]. The new task 
sets new requirements for the redesign of the artefact and so on perpetually. The task-
artefact cycle is in other words an iterative process of continuous, mutually dependent 
evolution between task and artefact [de Lëon (1999)], [Papantoniou et al. (2003)]. In 
the FPS case the task artefact co-evolution between game tasks and controller system 
is particularly vivid. This is due, on the one hand to the open-endedness of the games, 
which makes for frequent goal revision and search of alternative strategies, and on the 
other to the malleability of the keyboard mouse configuration.  

A less malleable controller system, e.g. a game pad optimized for a specific game, 
would definitely be easier to learn and probably easier to use. However it would allow 
for player intervention only at the task side, greatly reducing one of the joys of the 
game (e.g. controller customization) not to mention eliminating a major driver for 
game innovation.  

Indeed, a very important aspect in which the game pad differs from the mouse and 
keyboard is the lack of customizability. Generally the game pads leave no space for 
changes in key mapping, so players are obliged to follow the default mapping that 
comes with each game. On the contrary, in the PC customization options were always 
unlimited mainly because of the need to accommodate for the diversity of hardware 
used by each player. Customizability then, gave the opportunity for some 

 



11th Panhellenic Conference in Informatics 
 

 

44 

revolutionary ideas to emerge from the players' community, which in time formed the 
current control scheme design as a universal standard among FPS games. At present 
the control scheme although dominated by a quasi-stable key arrangement, continues 
to provide for customization by players (in many cases even promoting player 
customizations by facilitating the construction of macro-functions), so the 
evolutionary process is still active. For example today, with the multi-button mice 
being widely available commercially, expert players assign more and more functions 
to them in order to relieve the high load of the left hand. Wide adoption of the multi-
button mouse will inevitably alter expert game-play both in terms of pace and tactics. 
This may trigger another cycle of co-evolution with developers adding new 
challenges and probably providing new functions (e.g. making use of the redundant 
function keys now assigned to the multi-button mouse). 

The above situation allows advanced players to improve their performance and to 
reach a higher level of gaming. Thus, player contribution to the enhancement of the 
controllers was and still is significant. Game pads on the other hand allow for a fast 
learning curve, as they obey the ergonomic criteria inherent in their design. However, 
their rigidity prohibits creative interventions from experienced users, ultimately 
restricting performance, to a lower level of gaming.  

It is not an exaggeration to suggest that FPS evolution would be considerably 
inhibited if the games were restricted by a dedicated purpose built controller. Be that 
as it may, one thing seems certain; the modern FPS would not exist as we know it 
today if it was not for the plasticity of the keyboard and mouse controller system.  

2.4 Discussion  
There is a pragmatic lesson to be learned from the evolution of the FPS with wider 
implications for the HCI community. The time when software applications could be 
considered as novel for all, has passed. Today in many domains we find highly 
experienced user communities with needs that evolve rapidly, and in a dialectic 
manner with successive versions of their software tools. In such environments, 
successful designs may not be the ones “optimized” for the here and now of specific 
applications or tasks. Designers need to acknowledge this in order to manage the co-
evolution between i) users skills and strategies, ii) software and iii) interface features, 
judiciously allowing for plasticity. This way they prevent stagnation of their designed 
artefacts stimulating expert user inventiveness. In other words designers, by allowing 
for plasticity, allocate part of their activity to the user community, incorporating in a 
way part of the future design activity into the affordances offered in the designed 
artefact. 

On the users’ side, plasticity may sacrifice learnability, and even performance up to a 
certain point, if taken in its narrow sense as time to completion of a pre-specified set 
of tasks. However, for an experienced and motivated user community these are minor 



Human-Computer Interaction 45 

inconveniences compared to the opportunity to devise new ways of using the 
application and finally of having a say in its evolution. 

The present paper is part of an engineering thesis at the department of Product and 
Systems engineering of the University of the Aegean aiming at the design of a 
dedicated controller for FPS games.   

3. References 
Bannon L. J. & Bødker S. (1991). Beyond the Interface: Encountering Artifacts in 

Use. In J.M. Carroll (Ed.), Designing Interaction: Psychology at the human-
computer interface. New York: Cambridge University Press, ISBN 0521409217 

Carroll, J. M., Kellogg, W. A., & Rosson, M. B. (1991). The task-artefact cycle. In J. 
M. Carroll (Ed.), Designing interaction: Psychology at the human-computer 
interface. New York: Cambridge University Press, ISBN 0521409217. 

Clanton, C. (1998, April). An Interpreted Demonstration of Computer Game Design. 
Proceedings of the conference on CHI 98 summary: human factors in computing 
systems. Chi 98, 1–2. 

De Léon, David (1999): Building Thought into Things. In: Proceedings of the 3rd 
European Conference on Cognitive Science. 0000. p.37-47. 

Gee J. P. (2003). What Video Games Have to Teach Us About Learning and Literacy. 
Palgrave Macmillan, ISBN: 1403961697 

Grice, Roger. (2000). I’d Rather Play Computer Games Than Do Real Work! 
(Wouldn’t you?): The Appeal and Usability of Games Interfaces. Make It Easy 
2000 Conference, IBM.  

ISO 9241 (1998). Ergonomic requirements for office work with visual display 
erminals (VDTs) – Part 11: Guidance on usability  

Koster, R. (2004) A Theory of Fun for Game Design. Paraglyph Press, ISBN 
1932111972 

Norman, D. A. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing 
interaction: Psychology at the human-computer interface (pp. 17-38). Cambridge: 
Cambridge University Press, ISBN 0521409217. 

Papantoniou, B., Nathanael, D. & Marmaras, N. (2003). Moving Target: Designing 
for Evolving Practice. In Universal Access in HCI: Inclusive Design in the 
Information Society, C. Stefanidis (Eds.), Mahwah: Lawrence Erlbaum Assoc., 
Vol. 4. 

 

http://www.interaction-design.org/references/authors/david_de_l%E9on.html
http://www.interaction-design.org/references/conferences/proceedings_of_the_3rd_european_conference_on_cognitive_science.html
http://www.interaction-design.org/references/conferences/proceedings_of_the_3rd_european_conference_on_cognitive_science.html


11th Panhellenic Conference in Informatics 
 

 

46 

ANNEX 1. Example of Assigned keys, functions, functional groups and criteria of 
assignment 

 
Key Function Group Criteria 

MOUSE 
MOVEMENT 

Mouse look MOVEMENT Frequency - Speed of 
Use 

W Move forward MOVEMENT Consistency 

S Move back MOVEMENT Consistency 
A Move left (Strafe) MOVEMENT Consistency 
D Move right (Strafe) MOVEMENT Consistency 
SHIFT Walk (Move slowly) MOVEMENT Proximity and Physical 

shape-size 

SPACE Jump MOVEMENT Proximity and Physical 
shape-size 

CTRL Duck MOVEMENT Proximity and Physical 
shape-size 

MOUSE1 Fire COMBAT Frequency - Speed of 
Use 

MOUSE2 Weapon special 
function 

COMBAT Frequency - Speed of 
Use 

R Reload COMBAT Semantic mapping / 
Frequency of Use 

MWHEEL 
UP 

Previous weapon COMBAT Frequency - Speed of 
Use 

MWEEL 
DOWN 

Next Weapon COMBAT Frequency - Speed of 
Use 

Q Last weapon used COMBAT No criterion 

G Drop current weapon COMBAT Critical Error avoidance 
 


