

Interaction platform administration strategies:
Practice and experience

Akoumianakis D., Milolidakis G., Kotsalis D., Vellis G.

Department of Applied Information Technology & Multimedia
Technological Education Institution of Crete,

Estavromenos 715 00 Heraklion – Crete, GREECE
da@epp.teiher.gr; epp382@epp.teiher.gr; epp665@epp.teiher.gr; epp646@venus.cs.teicrete.gr

Abstract
This paper presents the notion of (user interface development) platform administration and
argues for its increasing importance in the context of modern interactive applications. Platform
administration entails strategies for manipulating diverse interaction components. Four such
strategies are elaborated – namely augmentation, expansion, integration and abstraction –
which collectively constitute the ingredients of a platform administration process. The paper
describes both the rationale for these strategies in the context of user interface development
and their implementation details, as currently realized in an ongoing R&D project.

Keywords: user interface toolkits, augmentation, expansion, integration, abstraction

1. Introduction
Over the past two decades, the development of graphical toolkits has been
continuous, addressing a variety of aspects including cutting-edge issues in 2D
graphical interaction (e.g., Piccolo by Bederson et al., 2004 and its predecessor
Jazz by Bederson et al., 2000), information visualization (e.g., prefuse by Heer et
al., 2005), etc. An alternative user interface development method makes use of
abstract notations and mark-up languages – typically dialects of XML – to facilitate
mapping of abstract components to platform-specific toolkit libraries by delegating
the display to a platform-specific renderer (Lee 2006). Each approach has relative
merits and drawbacks, while they may also conflict at times. Some of the advantages
of toolkit programming-based techniques include the capabilities to build improved
interaction techniques and to construct novel interaction object hierarchies. The
disadvantage is that realizing such capabilities is demanding and programming-
intensive task. On the other hand, approaches based on device-independent markup
languages are increasingly supported by tools, they are less demanding in terms of
programming skills, while they adopt some sort of abstraction-based mechanism to
make a step towards ‘write once, run everywhere’ user interfaces (Perry et al., 2001).
As for disadvantages, they are still in an infant state, while their multi-platform

mailto:da@epp.teiher.gr
mailto:epp382@epp.teiher.gr
mailto:epp665@epp.teiher.gr
mailto:epp646@venus.cs.teicrete.gr

Human-Computer Interaction 88

capability typically does not easily account for the improvements introduced by
toolkit programming-based techniques.

Irrespective of the development approach, one problem which is frequently faced by
designers and developers of interactive systems is that specialized applications often
require widgets that are unique to a particular problem. Such domain-specific or
legacy widgets are typically not directly supported by popular toolkits. In some cases,
they can be created from the simpler native building blocks depending on the
extensibility features offered by a specific toolkit. Nevertheless, the creation of such
custom widgets is far from trivial and frequently assumes ad hoc practices. In this
paper, we aim to describe the core elements of a user interface development process
intended to cope with challenges such as the above in a systematic manner. The
reminder of the paper is structured as follows. The next section motivates the problem
at hand. Then, the platform administration process is overviewed in terms of
constituent activities, their rationale and intended scope. This is facilitated by
illustrative examples of running prototypes and brief presentation of their technical
features with reference to Java’s Swing. In the last section, we summarize the
contributions of this work and draw some conclusions.

2. Problem description
All user interface development toolkits offer a limited number of widgets. However,
for certain applications the supported widget set may not suffice to provide the
interactive embodiment demanded by designers. As a partial solution to the problem,
toolkits offer a set of custom widgets and / or mechanisms for building new custom
widgets. However, there may be problems and applications which cannot be
adequately served by custom widget construction techniques. In such cases,
developers may consider the development of a new dedicated toolkit implementing
alternative spatial semantics and / or the integration of a third-party library which
offers alternative or more appropriate interaction components. In both these cases, the
pressing issue is on the interoperability between the base toolkit and the third-part
library or the new toolkit. These considerations pose new challenges for user interface
developers which increasingly need to be prepared to manage diverse collections of
interaction resources. Our interest in these issues dates back to early accounts of
universally accessible interactions (Stephanidis et al., 1997; Stephanidis et al., 2001)
and the development of multiple metaphor environments (Akoumianakis &
Stephanidis, 2003). Recent research and development activities have renewed and
extended this interest, resurfacing some of the limitations of widely available and
cutting edge 2D graphical user interface development toolkits. Consider for example
the case of synchronizing user interfaces across multiple-devices so as to allow
collaborative exploration of large volumes of community data to identify common
patterns or to assess behavioral relationships between the data (e.g., conditional
aggregation-desegregation patterns). Conventional 2D graphical toolkits do not offer

Human-Computer Interaction 89

the required support to build such user interfaces effectively and efficiently. Thus,
developers either sacrifice usability or adopt ad-hoc and one-off solutions.

Currently, we are facing such problems in the context of a R&D project aiming to
construct and test a pilot application of an electronic village of local interest on
tourism (Akoumianakis et al., 2007). Inhabitants and visitors of the electronic village
form dynamic squads (on-line communities of practice) engaging in a variety of
social interactions (i.e., establishing and maintaining sense of community, negotiating
goals, resolving conflicts, establishing norms) so as to develop new added-value
products and services. In this context, collaboration extends beyond standard
groupware facilities (e.g., floor control) and involves tracking of persistent messages
exchanged in the course of collaborative sessions using semantic properties,
analyzing the effect of on-line discussions and messages in terms of feedback and
feed-through, as well as interaction object replication and synchronization across
multiple devices with different capabilities, etc. In the course of developing initial
design concepts and tentative solutions, the limitations of conventional 2D graphical
toolkits were revisited in an attempt to establish a generic process and a set of
strategies allowing systematic manipulation of new and diverse interaction elements.
These strategies resurfaced three main topics, namely the augmentation of a graphical
toolkit so as to support new interaction techniques for existing / already supported (by
the toolkit) interaction elements, the expansion of the toolkit so as to allow the
creation of new and reusable interaction components and the integration of third-party
libraries offering novel interaction facilities. In the past, platform augmentation,
expansion and integration had been considered in the context of developing unified
user interfaces capable of adapting both to the requirements of the user and the
capabilities of an interaction platform (Stephanidis et al., 1997). Here, we report more
recent experiences and revisit the initial concepts in an attempt to consider them as
ingredients of a workflow – a process – called ‘platform administration’ which
increasingly needs to become part of interactive software development.

3. Platform administration and interface development strategies
Interaction platform administration is motivated by the increasingly pervasive nature
of interactive applications (Lee et al., 2006). Its distinct aim is to establish a reusable
user interface development repository (or a multiple toolkit platform) and to
streamline interactive software development efforts so as to make effective use of it.
Platform administration is the prime concern of environment builders and tool
developers. It is an iterative process, carried out incrementally over a period of time,
and seeking to establish the appropriate development environment for constructing
interactive software. In this paper our aim is to discuss key activities of this process,
which collectively allow for the manipulation of diverse collections of interaction
objects.

Human-Computer Interaction 90

Figure 1: Platform administration process elements

Figure 1 summarizes a workflow-oriented view of this process in terms of constituent
activities, outcomes, interdependencies and roles. This workflow-oriented view of
platform administration could be easily revised in terms activity notation to become
either a separate Rational Unified Process (RUP) workflow, or a sub-workflow
embedded in the established RUP workflows. The core theme running through the
process is that user interfaces are constructed by assembling abstractions derived as a
result of augmenting, expanding and integrating interaction platforms. Respectively,
platform administration comprises three basic activities, namely platform
augmentation, expansion and integration, which feed the activity of abstracting to
compile reusable user interface development components. The term ‘component’ here
implies primarily reusable class libraries, with suitable documentation (i.e. style
guides) for building interactive software.

3.1 Augmentation
Augmentation involves the introduction and programmatic control of additional
interaction techniques for some or all of the native interaction objects already
supported by the toolkit. Augmentation is useful in cases where a toolkit’s interaction
resources do not suffice to implement design concepts requiring new interaction
techniques. In the past toolkit augmentation has been used to improve use interface
accessibility by providing switch-based access to the Windows object library
(Stephanidis et al., 1997; 2001). However, augmentation, as discussed below, brings
about usability improvements, which extent beyond disability access. Figure 2
illustrates two examples of Java’s Swing augmentation of the JTree and
JTabbedPane components. It should be noted that our work on augmenting the
JTabbedPane and JTree components was carried out prior to the release of
Swing 1.6 which supports a similar augmentation for JTabbedPane component.
Therefore, we will briefly illustrate our approach by discussing the augmentation of
the JTree, which is not currently supported. The rationale for the augmentation
arises from our intention to support both single and multiple object selection

Human-Computer Interaction 91

concurrently in the same component. This combined capability is not offered by any
of the native Java’s Swing components. Nevertheless, it is useful in cases where
nested selection (i.e. pre-selection followed by multiple object selection) is required.
Figure 2 illustrates an augmented RadioCheckBoxTree which supports single
selection (or pre-selection) by tapping on the JRadioButton followed by multiple
checkbox selection. The augmented component also allows automatic de-selection of
a parent option (JRadioButton) when all children checkboxes are unchecked or
automatic de-selection of children when a parent option (JRadioButton) is unselected.

Figure 2: Example of augmented JTree and JTabbedPane

To implement the augmentation a number of extensions to the basic Swing class
library have been introduced (see Figure 3). RadioCheckBoxTree is the main
class which instantiates the augmented component by delegating responsibilities to
the following three classes. The class RadioCheckBoxTreeNode, in
correspondence with JTree’s default DefaultMutableTreeNode, is needed to
hold the state of each node in relation to its type (RadioButton or CheckBox).

Figure 3: Swing extensions for the augmented RadioCheckBoxTree

RadioCheckBoxTreeCellRenderer determines the visual appearance of the
RadioCheckBoxTree and its components, acting as a view (in MVC terms) of
each RadioCheckBoxTree. The difference with the JTree’s default renderer is
that this custom renderer subclasses a JPanel instead of a JLabel, thus allowing
presentation of visual components in addition to the classic text that a JLabel offers.
Finally, the class RadioCheckBoxMouseAdapter undertakes the role of the

Human-Computer Interaction 92

controller (in MVC terms), thus tracking and propagating the user’s events, changing
the model state, which in turn, delegates the event to the renderer in order to
propagate modifications to the view.

3.2 Expansion
Expanding a toolkit implies the capability to introduce new domain-specific
interaction objects preserving the toolkit’s original programming model. Toolkit
expansion is more common than toolkit augmentation. In the past it has been applied
to facilitate interactive embodiments of alternative metaphors (e.g., Moll-Carrillo et
al., 1995) and novel information visualization techniques. Moreover, expansion is the
prominent strategy followed in some demonstrational user interface development
techniques. We have experimented with toolkit expansion to introduce dedicated
interaction components, as separate entities hosting domain-specific functionality.

Figure 4: Example of expansion following calendar / activity organizer metaphors

Figure 4 presents an example of such a component which serves the purpose of
organizing a trip by day, time and type of activity. The figure also presents the
augmented components introduced earlier. In terms of implementation, the zoom-able
component ActivityPanel expands the Swing object library and is introduced as
a new interaction component instantiated with two parameters (i.e., start date and
duration). Separate objects of type Activity can be attached to an
ActivityPanel using the augmented RadioCheckBoxTree. Each Activity
is a selectable object which sub-classes Swing’s JButton component as shown in

Human-Computer Interaction 93

Figure 5. At any time, a request for trip overview can provide a consolidated visual
depiction of the entire trip as shown in Figure 4. This is obtained by a recalculation of
the ActivityPanel so as to present each day as a column filled-up with the activities
defined for that day. The resulting multi-column activity panel can be explored by
zooming in and out, left and right to obtain details for a particular day and / or
activity. Obviously, the approach can be further extended to allow new object
containment within an activity so as to allow nested and overlapping activities.

Figure 5: Swing expansion to allow the construction of activity panels hosting activities

3.3 Integration
Integration implies importing new interaction elements (e.g., dedicated object classes)
implemented either as a separate toolkit or as a third party-library. In such a case, it is
desirable the imported interaction objects to be available to the user interface
developer, just as the native objects of the toolkit. It is also important to distinguish
between toolkit integration as discussed here, from the multi-platform capability of
existing toolkits or device-independent mark-up languages (e.g., UIML). Toolkit
integration is more demanding as it assumes connectivity to arbitrary toolkits rather
than a single toolkit with hard-coded implementations across different operating
systems. In the context of our, we have addressed a particular aspect of integration
which entails importing dedicated third-party libraries to build 2D visualizations of
large volumes of data (i.e., on-line community participation, messages exchanged by
participants in the course of developing a new package) and synchronization between
these imported elements with conventional and / or augmented interaction
components.

Figure 6 illustrates an example of integrating the JGraph visualization and layout
libraries (http://www.jgraph.com/) in our running prototype to visualize messages
exchanged through the eΚοΝΕΣ message board. The distinct characteristic of this
message board is that it is implemented with a dual view component. The first view
makes use of JTreeTable to list all the messages in a hierarchical fashion within their
parent topic. The second view operates on the same model to present a 2D hierarchy
of messages exchanged using the JGraph Java API. The two views are interoperable
and fully synchronized. Thus, when users make a choice using the 2D JGraph view
the JTreeTable is automatically updated highlighting the corresponding selected item.
Moreover as the JGraph view scales up or down the hierarchy of messages so does
the tree-like view.

http://www.jgraph.com/

Human-Computer Interaction 94

Figure 6: Example of JGraph integration

Figure 7 presents an architectural view of the current implementation of the distinct
message board views. As shown, view update and synchronization is moderated by a
Controller-Model abstraction which handles event traffic. This abstraction acts as an
event dispatching service across the two views. Thus, when an event is dispatched,
each view is notified through the eΚοΝΕΣ controller. Views receive messages,
interpret them ‘locally’ based on their capabilities and accordingly each view is
updated. In the future, we plan to extent this basic model to allow distributed,
multiple-device exploration in the context of collaborative sessions.

Figure 7: JGraph integration and interoperation

Human-Computer Interaction 95

3.4 Abstract user interface components
Increasingly user interface developers face the challenge of having to program the
user interface as a composition of diverse interaction components, which need not be
available through a single toolkit or interaction platform. Typically, these toolkits do
not share the same programming model, which creates the need for an abstraction
layer hiding toolkit-specific details and allowing ‘linking to’ rather than directly
‘calling’ each toolkit’s libraries. In previous work, we have described the Platform
Integration Module which provides precisely such an abstraction layer (Savidis et al.,
1997) and supports the notion of a ‘multiple toolkit platform’. An alternative
approach builds on the philosophy of separating an abstract interface description and
its later rendering in any delivery context (Lee et al. 2006). The idea is that the user
interface is modelled in terms of abstract elements which are then transformed to
concrete instances on a target vocabulary. The model-based approach shares common
ground with the notion of a multiple toolkit platform, but there are also some
important differences. Specifically, the model-based approach focuses on portability,
which is necessary but not sufficient to address cases where the user interface should
utilise, concurrently at run-time, interaction facilities from different toolkit platforms.

4. Discussion
Platform administration as presented above is typically a complex activity, seldom
undertaken by tool developers. Nevertheless, it is more than likely that with the
advent of new interaction technologies and the proliferation of network-attachable
devices, user interface developers will increasingly need to consider explicitly some
sort of platform administration mechanisms. Responding to this challenge, they will
increasingly need to decide what is to be augmented, expanded, developed from
scratch and/or integrated. Currently, there are variable degrees of support for the
strategies discussed in this paper. In particular, augmentation, although supported by
most programming-based user interface development tools, it is rarely met in higher-
level development tools. Expansion is also supported in most programming-oriented
interface tools, but the considerable overhead, as well as the inherent implementation
complexity, necessitates expert programmers. Regarding toolkit integration, the
current trend is to support a multi-platform capability in a hard-coded manner (i.e.,
portable user interfaces using device-independent mark-up languages such as UIML).

5. Summary and conclusion
This paper has presented the ingredients of a user interface development process
aiming to advance techniques for manipulating diverse collections of interaction
elements. Augmentation refers to introducing new interaction techniques for already
supported interaction objects. Expansion entails the capability of constructing new
interaction elements either as generic or domain-specific components. Integration

Human-Computer Interaction 96

allows importing interaction components realized as third-party libraries. All three
strategies have been applied to facilitate improved interactions in the context of the
running eΚοΝΕΣ prototype, demonstrating both their potential value and technical
demands. Moreover, as these strategies reflect diverse development philosophies, the
paper revisited the key role of abstract user interface development and the more
demanding concept of multiple toolkit platforms.

6. Acknowledgement
The present work is carried out in the context of the eΚοΝΕΣ project which co-funded by the General
Secretariat for Research and Technology, Greek Ministry of Development.

7. References
Akoumianakis, D., Stephanidis, C. Multiple Metaphor Environments: designing for
diversity, Ergonomics, 46 (1-3), 2003, 88-113.
Akoumianakis, D., Vidakis, N., Vellis, G., Kotsalis, D., Milolidakis, G. Experience-
based social and collaborative performance in an ‘electronic village’ of local interest:
The eKoNΕΣ framework, Proceedings of 9th International Conference on Enterprise
Information Systems (ICEIS’2007), 12-16 June, Madeira - Portugal.
Bederson, B. B., Grosjean, J., Meyer, J. Toolkit Design for Interactive Structured
Graphics, IEEE Transactions on Software Engineering, 30 (8), pp. 535-546, 2004.
Bederson, B.B., Meyer, J., Good, L. Jazz: An Extensible Zoomable User Interface
Graphics Toolkit in Java. Proceedings of ACM UIST 2000, pp. 171-180 2000.
Heer, J., Card, S., Landay, J. prefuse: a toolkit for interactive information
visualization, Proceedings of ACM CHI, April 2–7, 2005, Portland, Oregon, USA.
Lee, C., Helal, S., Lee W. Universal Interactions with Smart Spaces, IEEE Pervasing
Computing (January-March), 2006, pp. 16-21.
Moll-Carrillo, H.J., Salomon, G., March, M., Fulton Suri, J., and Spreenber, P.
Articulating a Metaphor through user-centred design, Proceedings of ACM CHI
1995, Denver, 1995, 566–572.
Perry, M., O’hara, K., Sellen, A., Brown, B., Harper, R. Dealing with Mobility:
Understanding Access Anytime, Anywhere, ACM Transactions on Computer-Human
Interaction, 8 (4), 2001, 323–347.
Savidis A, Stephanidis C, Akoumianakis D., Unifying toolkit programming layers: a
multi-purpose toolkit integration module. In Harrison MD, Torres JC (eds) Proc. of
the 4th DSV-IS’97, Granada, Spain, 4–6 June 1997. Springer, pp 177–192.
Stephanidis C, Savidis A, Akoumianakis D. Universally accessible UIs: the unified
user interface development, Tutorial in the ACM SIGCHI’01, Seattle, USA, 2001.
Stephanidis, C., Savidis, A., & Akoumianakis, D. Unified Interface Development:
Tools for Constructing Accessible and Usable User interfaces, Tutorial no 13 in the
7th HCI International '97, San Francisco, USA, 1997.

