

Code Improvement: Implementing Design Patterns
to Java EE Applications

M. Mouratidou, V. Lourdas, A. Chatzigeorgiou, C. K. Georgiadis

Department of Applied Informatics, University of Macedonia,
Egnatia 156, GR-54006 Thessaloniki, Greece
{mai0502, mai0501, achat, geor} @uom.gr

Abstract

Design patterns, acting actually as recurring solutions to common problems, offer significant
benefits such as avoiding unnecessary complexity, and promoting code reuse, maintainability
and extensibility. This paper describes how four not technology-specific or language-specific
design patterns (Front Controller, Model View Controller, Transfer Object and Service to
Worker) can be implemented to Java EE applications. It also calculates the code improvement
after the implementation of each design pattern using software metrics. The improvement of
the quality of the code is considered by measuring the decrease of complexity, coupling or/and
response size.

Keywords: Java Enterprise Edition, design pattern, software metrics, software quality

1. Introduction
The Java Enterprise Edition (Java EE) platform comprises a platform for
development, deployment and execution of applications in a distributed environment
[Ball et al. (2006)]. It is a popular platform for the development of enterprise
applications, and is actually ideal for the easy development of complex, demanding
projects of big scale. Java EE is based on well-defined components to provide server-
side and client-side support for developing multi-tier applications [Mesbah et al.
(2005)]. Although Java EE applications may comprise of three or four tiers, they are
generally considered as parts of three-tier architecture, because of their distribution in
three layers: a client tier, a middle tier and a back-end tier. The client tier may offer
support for a multiplicity of client types, such as HTML pages generated by
JavaServer Pages (JSP), or Java applets. The middle tier, a Java EE server, has two
roles: with its web-oriented component (web tier), it maintains client services through
Web containers (e.g. Servlets, JSP). Additionally, with its business-oriented
component (EJB tier), it supports business logic component services through
Enterprise JavaBeans (EJB) containers. On the back-end tier, the enterprise
information systems are accessible by the way of standard APIs (e.g. JDBC) [Singh et
al. (2002), Johnson (2002)]. The server on this tier hosts the database and the
enterprise’s data. The three-tier applications extend the two-tier client-server model

11th Panhellenic Conference in Informatics 318

by placing an application server between the client application and the place where
the enterprise data are stored.

Design pattern is a well defined solution to a repeatedly occurring problem. From the
programmer’s point of view, a design pattern comprises a set of specific interactions
that can be applied in common objects in order to solve a known problem [Gamma et
al. (1995)]. The design patterns of good quality manage to maintain a balance
between the problem’s size they solve and the specific way they face the problem.

This paper describes the implementation of specific design patterns (Front Controller,
Model View Controller, Transfer Object, and Service to Worker) in a typical
enterprise application, such as the electronic bookstore. Moreover, we present the
resulting benefits after the implementation of each pattern. The benefits are described
as quantities by “measuring” the improvement in the quality of source code after the
implementation of each pattern. The quality of code is measured by proper metrics
and the differences in quality are measured by comparing the alterations of these
specific metrics’ values.

2. Description of the system under study
Four design patterns are implemented in the demonstration of an e-commerce
application. The application utilizes two enterprise beans, a stateful session bean and
a stateless session bean. The former implements the functionality of a customer’s
shopping cart during his/her visit in the e-shop and the latter provides methods that
implement the business logic. A stateful session bean has been selected to implement
the functionality of a customer’s shopping cart because a stateful session bean, in
contrary with a stateless, has the ability to maintain information during a session. So,
using a stateful session bean, the contents of the customer’s shopping cart can be
maintained during his/her navigation to the on line bookstore.

The stateful session bean provides methods that add and remove a book in the cart,
empty the customer’s shopping cart, return the collection of books that the cart
contains and the amount that the customer must pay (which is calculated as the sum
of prices of all books currently contained in the cart).

The stateless session bean provides methods that create a new user, update a user’s
personal information, delete an existing user, add, remove or update a book, return a
subset of the books, users or buys that have occurred, return a user’s personal
information, the book category which a customer prefers to buy books from and the
books that match the query entered by the user in their title, writer’s last name or
category name. Additionally, the stateless session bean provides methods that check
the validity of the username and password that a user enters for his/her login in the
bookstore, the validity of a credit card’s number and the validity of a book’s ISBN

Software Engineering 319

and carry out all required actions for the buy of all books currently contained in a
customer’s shopping cart.

Furthermore, the application utilizes the following servlets:

a) AdminCatalogServlet, which fulfils all user requests that relate to the
administrative section of the application,

b) BookDetailsServlet, which displays the book’s information per user request,

c) BookStoreServlet, which handles the user’s login in the bookstore,

d) CachierServlet, which completes a user’s buy by asking from the user all
required information (e.g. credit card details),

e) CatalogServlet, which handles the display and search functions for a user’s
books, along with the functionality of adding a book in his/her shopping cart,

f) ChangeUserServlet, which handles all requests for a user’s profile change,

g) CreateUserServlet, which handles all requests for the creation of a new user,

h) LogoutServlet, which handles all requests for the termination of a user’s
session,

i) ReceiptServlet, which completes the buy procedures of a user by displaying a
message stating the success or not of the buy, and

j) ShowCartServlet, which handles all requests for the display of the shopping
cart contents and the removal of an item or all from it.

3. Design Patterns
A description of the implementation of four specific design patterns follows. We will
present, as a case study, how these particular design patterns can be implemented to
the bookstore pilot application.

3.1 Implementation of Front Controller
After an inspection of servlets a) BookDetailsServlet, b) BookStoreServlet, c)
CashierServlet, d) CatalogServlet, e) ChangeUserServlet, f) LogoutServlet, g)
ReceiptServlet, and h) ShowCartServlet, it is realized that a common function exists
in all of them. This common function is the check whether a user browses the
bookstore either anonymously or with his/her username and password. If the user has
not logged in using one of the previous two methods, then he/she is forwarded to the
book-store’s login page in order to login properly.

According to the principle behind the design pattern Front Controller, any common
functionality is gathered into one application element, e.g. a servlet, which will be

11th Panhellenic Conference in Informatics 320

called before any other servlet [Alur et al. (2003), Crawford et al. (2003), Martin
(2003)]. The UML class diagram of the design pattern is shown in fig. 1.

Figure 1. The UML class diagram of the Front Controller pattern

After the implementation of the design pattern, any source code repetition is avoided,
making easier the process of code maintenance and reducing the possibility of
mistakes in case of a change in the application. In this particular situation, the same
portion of code is repeated eight times (in the eight servlets).

After the implementation of Front Controller, the new servlet FrontControllerServlet
is created, which includes the common code from the above indicated eight servlets
and handles the common functionality. FrontControllerServlet is executed every time
the user requests one of the above mentioned servlets, and after it completes
execution, it calls for execution the initially requested by the user servlet.

3.2 Implementation of Model View Controller
During the use of an e-shop or any application in general, the need to change or
extend it often arises. These changes might affect either the application functionality
or its user interface. If no explicit boundaries between the functionality and the user
interface elements in an application are defined, problems could arise. If, for example,
a change in the application’s display is needed, this could affect the portions of the
code that implement its functionality and vice versa.

The goal of the Model View Controller (MVC) pattern is to set explicit boundaries
between the elements of an application that implement its functionality, display and
model [Alur et al. (2003), Crawford et al. (2003), Martin (2003)]. The MVC design
pattern separates user interface code into three distinct classes: Model (stores the data
and application logic for the interface), View (renders the interface, usually to the
screen), and Controller (responds to user input by modifying the model). The basic
principle of MVC is the separation of responsibilities. In an MVC application, the
model class concerns itself only with the application's state and logic. It has no

Software Engineering 321

interest in how that state is represented to the user or how user input is received. By
contrast, the view class concerns itself only with creating the user interface in
response to generic updates it receives from the model. It does not care about
application logic or about the processing of input. Finally, the controller class is
occupied solely with translating user input into updates that it passes to the model. It
does not care how the input is received or what the model does with those updates
[Moock (2004), Singh et al. (2002)].

The UML class diagram of the pattern is displayed in figure 2. Data and classes that
act as data represent the model. The functionality is handled by classes or servlets and
the display by HTML or Java Server Pages (JSP).

The bookstore application does not define any explicit boundaries between the
elements that implement its functionality or display. In fact, the servlets are the
application elements that implement both. After the application of MVC pattern for
each servlet, besides FrontControllerServlet which was created after the application of
the Front Controller pattern and it does not implement any display part of the
application, one or more JSPs are created. More specifically, a separation of code that
relates to the functionality and code that relates to the display is applied. The latter is
moved into JSPs.

Figure 2. The UML class diagram of the Model View Controller pattern

3.3 Implementation of Transfer Object
The principle behind the design pattern Transfer Object is the creation of an object
that carries multiple data from one application layer to another, e.g. from the
enterprise to the presentation layer [Alur et al. (2003), Crawford et al. (2003), Martin
(2003)]. All class attributes are defined public, so that no getter and setter methods
are created, as is the case with Java Beans. The use of Transfer Object minimizes the
effort and time to transfer data from one layer to another and the communication in
general of a Java EE application’s layers. The pattern’s UML class diagram is
displayed in fig. 3.

11th Panhellenic Conference in Informatics 322

Figure 3. The UML class diagram of the Transfer Object pattern

In the bookstore application, there is a transfer of a great deal of data between the
enterprise and the presentation layer. Some of those are the list of available books, the
list of users and the list of buys. The display of each list is done partially in pages, so
that they are easy to read due to their great length. However, the latter is not fixed,
because of the fact that at any time books can be added or deleted, a book’s supply
can reach zero, users can be added or deleted or new buys can occur. So, during a
page retrieve process the length of each list should be known in advance, besides the
list’s elements that correspond to the currently displayed page, in order to create the
links to the other pages.

For this purpose, the class TransferList was created, having as properties an ArrayList
object that holds the portion of the list that is requested and an integer that holds the
length of the list. The TransferList class is not different when it holds books, user or
buy objects, because of the ArrayList’s feature to hold any kind of object.
TransferList allows for the concurrent transfer of a great deal of the same kind of
objects and their count number, which are currently stored in the database. By
utilizing this, the number of database accesses is decreased, since all required data are
retrieved with a single function, whereas before the pattern’s implementation two
databases accesses were necessary, one for the page’s objects and one for the total
number of objects.

3.4 Implementation of Service to Worker
The goal of the design pattern Service to Worker is to maintain a separation between
the actions that must be executed, the display and the functionality of the application
[Alur et al. (2003), Crawford et al. (2003), Martin (2003)]. Service to Worker is an
extension to Front Controller and uses an object that is called dispatcher. The
dispatcher encloses the appropriate action to be executed and the corresponding
display page according to the user’s request. The UML class diagram of the pattern is
displayed in fig 4.

The pattern is applied at two points, a) at the section which targets the bookstore’s
customers, and b) at the administrative section. The interface Action is used,
containing the method performAction(), that takes an HttpServletRequest object as
parameter and represents the user’s request. This interface is implemented by the
classes a) admincatalogAction, b) adminlogoutAction, c) bookdetailsAction, d)
cashierAction, e) catalogAction, f) changeuserAction, g) insertbookAction, h)

Software Engineering 323

logoutAction, i) receiptAction, j) showcartAction, k) transactionsAction, and l)
usersAction.java. The interface Dispatcher is also used, which contains the method
getNextPage() that takes as parameter an HttpServletRequest object and represents
the user’s request. This interface is implemented by the classes UserDispatcher and
AdminDispatcher. The former takes on the responsibility of executing the appropriate
action according to user’s request and calls the appropriate JSP for the user section of
the application, whereas the latter does the same for the administrative section.

Figure 4. The UML class diagram of the Service to Worker pattern

After the implementation of the pattern, the servlets are replaced by “normal” classes.
This replacement enables the ability to call the perfomAction() method without the
existence of a web container, as is the case with servlets. The object Dispatcher also
takes on the responsibility of choosing the appropriate action that must be executed
and the call of the JSP that renders the response. If for any reason, the logic behind
the selection of the appropriate action or JSP is changed, the implementation of
Dispatcher is all that needs to be changed, without affecting other classes (e.g. the
class that implements Front Controller).

4. Results and Discussion
The quality of the source code is calculated using metrics [Li et al. (1993), Lorenz et
al. (1994), Chidamber et al. (1994)]. Simple classes with few methods are easy to
change and extend. Classes that are not tightly coupled with other classes or have low
response set, cause few or no changes to other classes. So, the metrics that are used in
order to be defined how easily the source code can be maintained and extended before
and after the implementation of each design pattern are:

 Coupling Between Objects (CBO), which represents the number of other classes
to which a class is coupled to,

11th Panhellenic Conference in Informatics 324

 Changing Methods (CM), which represents the number of distinct methods in
the system that would be potentially affected by changes operated in the
measured class,

 Changing Classes (ChC), which represents the number of client-classes where
the changes must be operated in result of a change in the server-class,

 Response For Class (RFC), which represents the size of the response set for the
class which includes methods in the class's inheritance hierarchy and methods
that can be invoked on other objects,

 Weighted Methods Per Class 1 (WMPC1), which represents the sum of the
(algorithm) complexity of all methods for a class, where each method is
weighted by its cyclomatic complexity1, and

 Weighted Methods Per Class 2 (WMPC2), which measures the complexity of a
class, assuming that a class with more methods than another is more complex,
and that a method with more parameters than another is also likely to be more
complex.

Generally, the values of the above metrics should be as low as possible. According to
Salehie et al. (2006), the high values of those metrics may be caused by a “design
flaw”. A design flaw is possible to cause difficulties or problems during the
maintenance and extension of an application. A low value or a decrease of a metric
value after a change in the source code, possibly by the implementation of a design
pattern, means that the quality of the source code has increased.

4.1 Metric changes after the implementation of the Front Controller design
pattern

The classes that are influenced the most by the implementation of the Front Controller
design pattern are the servlets: a) BookDetailsServlet, b) BookStoreServlet, c)
CashierServlet, d) CatalogServlet, e) ChangeUserServlet, f) LogoutServlet, g)
ReceiptServlet, and h) ShowCartServlet. Figure 5 shows the changes of CBO, RFC
and WMPC1 metrics after the implementation of the pattern. The metrics have been
decreased for all servlets. The average decrease of CBO metric for the eight servlets
is 15%, though LogoutServlet servlet has the biggest decrease, 27% (11 to 8). The
average decrease of RFC metric is 13%, though BookStoreServlet servlet has the
biggest decrease, 28% (46 to 33). The average decrease of WMPC1 metric is 12%,
though LogoutServlet servlet has the biggest decrease, 20% (5 to 4). The values of
CM, ChC and WMPC2 metrics do not notably change.

1 Cyclomatic complexity measures the number of linearly independent paths through
a program's source code using a graph that describes the control flow of the program

Software Engineering 325

Metrics changes

0
5

10
15
20
25
30
35
40
45
50

CBO before CBO after RFC before RFC after WMPC1 before WMPC1 after

CBO before 15 25 17 18 14 11 16 20

CBO after 13 21 14 17 12 8 14 18

RFC before 28 46 28 43 36 18 24 37

RFC after 25 33 25 38 33 15 21 34

WMPC1 before 6 19 15 25 16 5 10 11

WMPC1 after 5 16 14 23 15 4 9 10

BookDetai
lsServlet

BookStore
Servlet

CashierSe
rvlet

CatalogSe
rvlet

ChangeUs
erServlet

LogoutSer
vlet

ReceiptSe
rvlet

ShowCart
Servlet

Figure 5. Changes of the CBO, RFC and WMPC1 metrics after the implementation of

the Front Controller design pattern

The decrease of the complexity of the servlets, extracting the common source code
from them, is shown by the decrease of WMPC1 metric. Extracting source code from
the servlets results the decrease of servlet response which is shown by the decrease of
RFC metric and the decrease of coupling which is shown by the decrease of CBO
metric. The common source code of servlets that was moved to
FrontControllerServlet servlet included coupling between classes that no longer exists
in the new servlets. Additionally, the lines of source code decrease by 0.8% (4562 to
4525 lines). If the common functions of the application were more than one the
decrease would be much more.

4.2 Metric changes after the implementation of the Model-View-Controller
design pattern

After the implementation of the MVC design pattern, the servlets that had the role of
the controller and the role of the view, they now act only as the controller, which
process the request and update the model, while JSPs have the role of the view.

11th Panhellenic Conference in Informatics 326

Metrics changes

0

20

40

60

80

100

RFC before RFC after WMPC1 before WMPC1 after WMPC2 before WMPC2 after

RFC before 88 25 33 25 38 33 35 15 21 34

RFC after 58 16 30 17 28 19 27 12 20 27

WMPC1 before 71 5 16 14 23 15 14 4 9 10

WMPC1 after 32 5 14 5 10 5 6 4 8 7

WMPC2 before 15 10 11 10 10 14 14 10 10 10

WMPC2 after 11 10 11 10 10 10 11 10 10 10

AdminC
atalogS
ervlet

BookDe
tailsSer

vlet

BookSto
reServle

t

Cashier
Servlet

Catalog
Servlet

Change
UserSer

vlet

CreateU
serServl

et

LogoutS
ervlet

Receipt
Servlet

ShowCa
rtServlet

Figure 6. Changes of the RFC, WMPC1 and WMPC2 metrics after the

implementation of the Model View Controller design pattern

Fig. 6 shows the changes of RFC, WMPC1 and WMPC2 metrics. The average
decrease of RFC metric is 25%, though ChangeUserServlet servlet has the biggest
decrease, 42% (33 to 19). The average decrease of WMPC1 metric is 35%, though
servlet ChangeUserServlet servlet has also the biggest decrease, 67% (15 to 5). The
average decrease of WMPC2 metric is 7,6%, though ChangeUserServlet servlet has,
again, the biggest decrease, 28,6% (14 to 10). This particular metric changes in only
three of the ten servlets, however, for those three servlets the decrease is over 21%.
The value of CBO metric does not notably change.

Moving the source code that is responsible for the presentation of the application to
JSPs results to the decrease of servlet response, which is shown by the decrease of
RFC metric. The decrease of complexity of the servlets is shown by the big decrease
of WMPC1 and WMPC2 metrics.

There is, also, notable decrease to CM and ChC metrics for the classes: BookDetails
(CM: 14 to 11, ChC: 9 to 6), ShoppingCartItem (CM: 6 to 5, ChC: 4 to 3),
TransactionDetails (CM: 2 to 1, ChC: 3 to 2) and Currency (CM: 7 to 6, ChC: 7 to 6).
The decrease percentage of CM and ChC metrics is not calculated because of the fact
that the values of the metrics before the implementation of the MVC pattern were too

Software Engineering 327

low and a decrease by one, e.g. from value 2 to value 1, would mean 50% decrease. If
one of the above classes changes the need for changes to the system decreases.
Additionally, the lines of source code decrease by 45% (4525 to 3121 lines), because
the code that has to do with the presentation is moved to JSPs.

4.3 Metric changes after the implementation of the Transfer Object design
pattern

The implementation of Transfer Object design pattern decreases the need for changes
of the system in case the TransferSessionRemoteBusiness, BookDetails, BookDB and
BooksNotFoundException classes change. The decrease of CM metric shows the
decrease of the need for changes to the system. The average decrease of CM metric is
13%, though BookDB and BooksNotFoundException classes have the biggest
decrease, 16%.

The average decrease of RFC metric is 5%, though TransactSessionRemoteBusiness
class has the biggest decrease, 15%. At the same time, the average decrease of
WMPC1 metric is 5%, though TransactSessionRemoteBusiness class have the biggest
decrease, 15%. The average decrease of WMPC2 metric is 3%, though
TransactSessionRemoteBusiness class has also the biggest decrease, 4.4%. The
values of CBO and ChC metrics do not notably change. Additionally, the lines of
source code decrease by 1% (3121 to 3087 lines).

4.4 Metric changes after the implementation of the Service to Worker design
pattern

After the implementation of the two instances of the Service to Worker design
pattern, one for the administration section and one for the customer section of the e-
shop, all servlets, except AdminCatalogServlet and FrontControllerServlet which
have the role of Front Controller for the two sections, no longer exist. The two Front
Controllers, the classes that implement the Dispatcher interface and the classes that
implement the Action interface share the role of those servlets.

Before the implementation of this pattern the administration section was implemented
only by the AdminCatalogServlet servlet. After the implementation of the pattern the
implementation of the administration section of the bookstore is shared by
AdminCatalogServlet that has only the role of Front Controller for this section, the
AdminDispatcher class (that implements the Dispatcher interface) and the
admincatalogAction, adminlogoutAction, insertbookAction, transactionsAction and
usersAction classes (that implement the Action interface). At the customer section,
the FrontControllerServlet servlet preserves the role of Front Controller for this
section and with the UserDispatcher class and the bookdetailsAction, cashierAction,
catalogAction, changeuserAction, logoutAction, receiptAction and showcartAction
classes share the role of the servlets.

11th Panhellenic Conference in Informatics 328

Fig. 7 shows the changes of the CBO, RFC and ChC metrics for the servlets after the
implementation of the design pattern. The average decrease of CBO metric is 28%,
though the LogoutServlet class has the biggest decrease, 70%. The average decrease
of RFC metric is 27%, though the LogoutServlet class has also the biggest decrease,
67%. The ChC metric for all servlets except AdminCatalogServlet and
FrontController that remains 2, becomes 1. The value of CM metric does not notably
change.

Metrics changes

0

10

20

30

40

50

60

CBO bef ore CBO af ter RFC bef ore RFC af ter ChC bef ore ChC af ter

CBO bef ore 26 22 14 16 18 13 10 15 18

CBO af ter 24 26 9 11 13 8 3 10 13

RFC bef ore 56 30 16 17 26 18 12 21 26

RFC af ter 36 46 10 11 18 12 4 15 19

ChC bef ore 2 2 2 2 2 2 2 2 2

ChC af ter 2 2 1 1 1 1 1 1 1

AdminC
atalogSe

rv let

FrontCo
ntrollerS

erv let

BookDet
ailsServ l

et

Cashier
Serv let

Catalog
Serv let

Change
UserSer

v let

LogoutS
erv let

Receipt
Serv let

ShowCar
tServ let

Figure 7. Changes of the CBO, RFC and ChC metrics after the implementation of the

Service to Worker design pattern

Moving the functionality from the servlets to classes that implement the Dispatcher
and the Action interfaces results in the decrease of the response of the classes that
implement the Action and the decrease of the coupling betweens classes. The
decrease of the RFC metric shows the decrease of the response and the decrease of
the CBO metric show the decrease of the coupling. The decrease of the ChC metric
shows the decrease of the need for changes if one of those classes changes.

Fig. 8 shows the changes of the WMPC1 and WMPC2 metrics. The average decrease
of WMPC1 metric is 38%, though the LogoutServlet class has the biggest decrease,
75%. The average decrease of WMPC2 metric is 61%. This metric for the

Software Engineering 329

AdminCatalogServlet servlet remains the same, for the FrontControllerServlet servlet
has 9% increase and the remaining servlets have a decrease of 80%.

Metrics changes

0

5

10

15

20

25

30

35

WMPC1 before WMPC1 after WMPC2 before WMPC2 after

WMPC1 before 32 9 5 5 10 5 4 8 7

WMPC1 after 11 17 2 2 7 2 1 5 4

WMPC2 before 11 11 10 10 10 10 10 10 10

WMPC2 after 11 12 2 2 2 2 2 2 2

AdminCa
talogServ

let

FrontCon
trollerSer

vlet

BookDet
ailsServl

et

CashierS
ervlet

CatalogS
ervlet

ChangeU
serServle

t

LogoutSe
rvlet

ReceiptS
ervlet

ShowCar
tServlet

Figure 8. Changes of the WMPC1 and WMPC2 metrics after the implementation of

the Service to Worker design pattern

The big decrease of the WMPC1 and WMPC2 metrics shows the big decrease of the
complexity (WMPC1) and the number of methods of the servlets that no longer exist
(WMPC2) after the implementation of the Service to Worker pattern. Additionally,
the lines of source code decrease by 8.4% (3087 to 2829 lines).

5. Conclusion
The application of four not technology-specific nor language-specific design
patterns on a typical Web Application has been examined by using appropriate
metrics. According to the metric changes the implementation of the Front Controller
influences eight servlets out of the ten servlets. After the implementation of the Front
Controller, the servlets and consequently a great part of the application’s functionality
have a 12% to 15% decrease of complexity, response and coupling between classes.
The implementation of the MVC design pattern influences almost all servlets of the
application. The response of the servlets decreases by 25% and the complexity
decreases by 35%. The implementation of the Transfer Object decreases by 13% the
need for changes to the system if classes that implement the design pattern change.
The implementation of the two instances of the Service to Worker design pattern has

11th Panhellenic Conference in Informatics 330

an impressive improvement of the code of the application. The coupling decreases
28%, the response 27% and the complexity more than 38%.
The implementation of a design pattern to an application, like an e-shop, influences
the classes that implement the specific design pattern positively and a significant
improvement of a set of classes improves the application as a whole. Additionally, the
lines of the source code decrease, although the number of the classes increases.

In case more than one design patterns are implemented in the same part of an
application the results are better. For example, the gradual implementation of the
patterns: Front Controller, MVC and Service to Worker, to the e-shop, results the
continually increasing quality of the servlet code and consequently the maintenance
and extensibility of the application is remarkably improved.

References
Alur, D., Crupi, J. and Malks (2003), D. Core J2EE Patterns Best Practices and

Design Stategies, California USA, Sun Microsystems.
Ball, J. et al. (2006), The Java EE 5 Tutorial, California USA, Sun Microsystems

Press.
Chidamber, S.R., Kemerer, C.F. (1994), “A Metrics Suite for Object Oriented

Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-493.
Crawford W. and Kaplan J. (2003). J2EE Design Patterns, USA, O'Reilly.
Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995), Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.
Johnson R. (2002). Expert One-on-One J2EE Design and Development, USA, John

Wiley & Sons, Inc.
Li, W., Henry, S. (1993), “Object-Oriented Metrics that Predict Maintainability,” J.

Systems and Software, vol. 23, no. 2, pp. 111-122.
Lorenz, M., Kidd, J. (1994), Object-Oriented Software Metrics. Object-Oriented

Series, Prentice Hall.
Martin, R.C. (2003), Agile Software Development: Principles, Patterns and Practices.

Prentice Hall.
Mesbah A. and Deursen A. (2005). Crosscutting Concerns in J2EE Applications. In

Proceedings of the 7th IEEE International Symposium on Web Site Evolution
(WSE 2005), IEEE Computer Society, pp. 14-21.

Moock C. (2004). Essential ActionScript 2.0, USA, O’ Reilly Media.
Salehie M., Li S. and Tahvildari L. (2006). A Metric-Based Heuristic Framework to

Detect Object-Oriented Design Flaws, 14th IEEE International Conference on
Program Comprehension (ICPC'06), pp. 159-168.

Singh I., Stearns B., Johnson M. and the Enterprise Team (2002). Designing
Enterprise Applications with the J2EE Platform, Second Edition, Sun
Microsystems, Inc.

