

The Orderliness and Precision in Conceptual
Modelling

Elita Pakalnickiene, Lina Nemuraite, Bronius Paradauskas

Kaunas University of Technology, Studentu 50-315a, LT 51368 Kaunas, Lithuania,
elita.pakalnickiene@gmail.com, lina.nemuraite@ktu.lt, bronius.paradauskas@ktu.lt

Abstract

The quality of conceptual models and processes for their development may be considerably
improved bringing the ordering to their structure and analysis process. The method is
proposed for development of ordered conceptual model and its enrichment with integrity
constraints. The ordering has many advantages: conceptual model conforms to normal forms
and ontological foundations of conceptual models; it has the test for the conformance to the
observed reality; all three steps – discovery of entities, constraints and testing – are completed
by the similar and natural process. The discovery of integrity constraints is supported by the
taxonomy created on the base of analysis of the most promising methods for conceptual
modelling. Resulting models comprise lattices of formal concepts.

Keywords: conceptual model, integrity constraint, ordering, entity, interface, normalization,
UML.

1. Introduction
Conceptual schemas and conceptual models of Information Systems (IS) are under
consideration a long before, however their quality remains the challenge for
developers as requirements for quality are growing due to the Semantic Web, Model
Driven Development and Service orientation. Conceptual models are an urgent part of
requirements specifications and make the foundation for the overall IS development
process.

The method for development of the Ordered and Precise Conceptual Model (OPCM)
represented in this paper pursues two important purposes: a creation of the ordered
conceptual model and its enrichment with integrity constraints. Being the consequent
extension of the proposal [Nemuraite et. Al. (2005)]), the OPCM comprises the IS
state related part (i.e. Data Model) of the Design Independent Modelling (DIM)
([Ceponiene et. Al. (2005)]) that is based on IS fundamentals [ISO/TR 9007 (1987)],
according which the conceptual schema of information system must include state,
behaviour, constraints and derivation rules.

mailto:elita.pakalnickiene@gmail.com
mailto:lina.nemuraite@ktu.lt

11th Panhellenic Conference in Informatics 342

Use case driven methods for development of conceptual models are widespread, but
they lack formal rules and have faced the criticism during the last years (e.g.
[Svetinovic et. Al. (2006)]). The suggested ordering of use cases according the
descending timescales of life cycles of types of objects obtained as results of
transactions performed by these use cases not only defines rules for discovery of
interfaces and classes of data entities but also approaches to the matter of time-related
object identity. The object identity is one of the core concepts recognized in
ontological research; however, object identity is missing in UML conceptual models.
We do not keep in mind “default” object identifiers, but the true identity, the
uniqueness of domain objects. We argue that the object identity should be explicit in
well formed, precise conceptual model.

Our goal is to represent the method for development of ordered conceptual models
with integrity constraints and to unfold its possibilities. The rest of the paper is
organized as follows. In section 2 methods for creation of conceptual schemas of
information systems are investigated. In section 3 the method is presented for
development of conceptual model using interface-based representation of use cases.
Section 4 proposes process for adding and testing integrity constraints. In section 5
the normalization of resulting model is demonstrated by representing it as a lattice of
formal concepts. Finally, section 6 concludes the paper and discusses future work.

2. Related Work
IS conceptual schema can be constructed in many different ways, from different
sources; however, the comprehensive methodology is missing till now. Existing
methods may be divided into several groups.

Methods, based on the analysis of the natural language currently are ineffective, but
have promises for the future. Techniques for discovering classes perform grammatical
analysis of requirements specifications searching for nouns, adjectives and verbs,
which are candidate classes, attributes and services of the system; in [Vongdoiwang
et. Al. (2006)] ontologies for this purpose are used. The comparison of use case
driven approaches with grammatical analysis of textual requirements [Anda et. Al.
(2005)] results in the conclusion that class diagrams constructed from use cases are
structured better, but a clear technique is needed for transition from use cases to class
diagrams.

Methods, based on the analysis of use cases. Use cases are important in the
identification of classes and associations between them. A use case specifies the
sequences of interactions that an actor should be able to perform to achieve his goal −
to gain the valuable result − in collaboration with the system under development and,
possibly, other systems. In Unified Process and ICONIX class diagrams are
constructed from use case diagrams, but a little attention is given to a discovery of
entities of problem domain. A Newtonian approach [Roussev et. Al. (2002)] presents

Software Engineering 343

method where use cases are described by state machines and every state is associated
with a business object that is gained or lost by the action performed during the
transition to that state. Besides many useful suggestions, the method loses its
advantages when trying to apply it to information systems where information
interchanges take a place instead of interchanges of economic value. Even more
rational principles are proposed by the goal-driven methodology where data entities
are derived from actor goals [Gustas et. Al. (2003)], but the main drawback of these
methodologies is the difficulty to applying them to domains other than business trade.

Methods using elementary concepts. A method suggested by Halpin for his Object-
Role Modelling [Halpin (2001)] differs from others by taking into account integrity
constraints and by making checking of obtained artefacts to ensure their conformance
to data of problem domain. The process is quite intuitive. Also, the opinion of
ontology researchers is that elementary concepts are insufficient for IS models.

Ontological approaches. For achieving the better quality of conceptual models, the
theoretical foundations for the order of concepts and relationships in conceptual
modelling may be transposed from the ontological research. The most significant
approaches are Bunge-Wand-Weber Ontology [Wyssusek et. Al. (2005)] and General
Ontological Language (GOL) [Guizzardi et. Al. (2004)]. The both methodologies are
similar though they are using different notions. Currently ontological methodologies
yet have not defined all rules necessary for conceptual modelling; moreover,
ontological rules are declarative, they do not prescribe how to achieve the needed
qualities. It is worth to mention, that the ontological principles of identity, rigidity,
unity, dependency, order, and others are in account by the OPCM.

Methods dealing with integrity constraints. Integrity constraints are first class citizens
of conceptual models [Debenham (1997)]. However, no comprehensive methodology
for discovery of integrity constraints is established till now. In [Miliauskaite et. Al.
(2005b)] taxonomy of integrity constraints was proposed based on analysis of types
of constraints in the most promising conceptual modelling methods (ER, Extended
ER (EER), UML, eXexutable UML (xUML), and ORM). We have revealed the types
of constraints that are important for well-formed conceptual models, and applied them
for conceptual modelling in UML and OCL. UML is easy extensible with stereotypes
that were established in [Miliauskaite et. Al. (2005a)] for visual modelling of all types
of taxonomical constraints.

The OPCM development process is based on the sequential analysis of interface-
based representation of use cases having semantics of business transactions. It is
different from other methods as institutes the order of analysis steps and results in
ordered conceptual schema. This is important aspect that makes conceptual schema
well-formed, normalized and easy readable; the completeness of use case model and
conceptual schema is ensured by cross-checking entities and interface operations. The

11th Panhellenic Conference in Informatics 344

resulting conceptual model is semantically enriched by integrity constraints, and
subjected for verification of its conformance to valid states of problem domain.

3. Development of conceptual model using interface-based
representation of use cases
The OPCM development consists of three steps: creation of ordered conceptual
model; adding integrity constraints; testing constraints with instances of domain
objects. In the first step, initial use cases represented by use case diagram and
specifications are arranged to levels in descending order of timescales of lifecycles of
results of business transactions performed by these use cases. The method is
demonstrated by an example of Production Information System (Figure 1), in which
each product has the sequence of operations of predefined types needed to produce it.
Product may be produced according to the plan by executing planned tasks. Persons
are divided into managers and employees. Each task is associated with employee and
inspector which must be the manager of the assigned employee. Every use case is
represented by the interface; activities performed during interactions of actors and use
cases are represented by data-specific operations Create, Read, Update, Delete
(CRUD) of corresponding interfaces.

Manage product operation

Manage production task

Manage task sequence

Manage operation type

Human resources
 manager

Manage department

Manage production

Manage plan task

Manage manager

Production manager

Manage product

Manage worker

Manage person

Product manager

Manage taskManage plan

Plan manager

<<include>>

<<include>>

<<include>>

Figure 1. Use cases of production information system

Objects collaborating in operations of interfaces are identified from specifications of
use case steps, as well as their pre and post conditions. Objects participating in post
condition and output of the operation are existence-dependent from objects in
precondition and input of this operation. New objects and interfaces are gradually
introduced into object diagram starting from use cases of the top level.

The conceptual model is created by mapping objects to entities and their values to
attributes (for brevity, only essential attributes – identifiers of entities and their
dependencies from other entities – are shown on Figure 2). Entities and interfaces are
ordered according dependencies between objects and operations. If objects are

Software Engineering 345

existent-independent but must be related, the new entity must be added to represent
this relationship. Existence dependency between entities is represented by the
mandatory association of the dependent entity to the base entity.

Figure 2. Class diagram with integrity constraints representing entities and

interfaces of Production IS

Generalization relationship occurs when object after operation gains new values and
links but its identity value remains unchanged. It is a rather subtle task to discover
generalizations; often generalization is decided a priori or introduced later for the
improvement of model. Relationship <<include>> between use cases is mapped to the

11th Panhellenic Conference in Informatics 346

usage dependency (represented by dashed line and stereotype <<use>>),
generalization – to generalization.

4. Adding and testing constraints
In conceptual model, integrity constraint is a logic formula, dependent from the
problem domain, and it must hold for all meaningful states of the information system
[Mellor et. Al. (2002)]. Integrity constraints are able to ensure that domain semantics
will be precisely expressed in conceptual model – this quality is not achievable by
visual languages. Integrity constraints support criteria of expressivity, clarity,
simplicity, orthogonallity, semantic stability and relevance, validation/abstraction
mechanisms, and formal foundation [Halpin (2001)]. For adding integrity constraints
we will apply the same principles for gradual introduction starting from independent
entities.

We will introduce constraints that are required in pre and post conditions for
successful accomplishment of operations (the existence of operation parameters is
implied by default). All constraints on attributes and their combinations, external
dependencies, constraints on inputs, expressed in pre-conditions, remain valid for all
lifecycles of objects, created during the operation. Consequently, they are invariants
of these entities. Derivation rules specified in post conditions also may be specified in
conceptual model. For example, in order to create an instance of the Person we must
get not-empty first name, last name and person code; for creation of an instance of the
Worker we must have two valid instances of the Person, one of them must be a
Manager of the same Department where the second person is intending to become a
Worker. The resulting invariant in OCL will be included in the conceptual model of
Production IS (stereotype of the equal set constraint on the association R1 {equ, R2,
R3} on Figure 2):

tment)self.Depard|Department:exists(denter.Departmself.Manag
:invrker context Wo

=→

Constraints on states are not relevant for this purpose and must not be included as
invariants because these constraints must hold at the moment of activation of the
operation, but after the accomplishment of that operation they may be irreversibly
changed. The process for adding constraints is presented on Figure 3. This process
also helps to resolve the problem of assigning invariants to entities: the invariant that
is dependent on several entities is assigned to the entity with the shortest lifecycle.

Constraints are derived from requirements, and requirements are the obligations for
the system to enforce some business rules. However, the knowledge about business
rules is not enough for successful definition of all constraints. In every step of the
process of adding constraints one should look for typical situations requiring

Software Engineering 347

constraints. Using OPCM the amount of constraints is significantly decreased as only
rigid (i.e. mandatory) properties are relevant for well- formed conceptual model.

Figure 3. Process for adding constraints

Nevertheless, reflexive associations, generalizations, relationship paths, loops,
derivations constraints are not avoidable by well-formed structures and require a
special attention to revealing them. For example, reflexive relationship for entity plan
task requires {acyclic} and path constraints because the concrete task cannot occur
repeatedly after itself or several times in the sequence belonging to the same plan.
This requirement is expressed with acyclic constraint {acyclic, R7} on Figure 2.

In the third step, we will analyze and test integrity constraints that must be satisfied in
every state of the system, abstracting from state transition constraints that must be
satisfied for application-specific state transitions. The testing of OPCM adhere the
same principles as its construction: the sequential procedure starting from the top
level. However, the test elements are of the finer granularity as every constraint is
tested separately: constraints on attribute, attributes, entity, entities, relationship,
relationships, and, finally, on the overall schema. The gradual testing practically may
be integrated with creation of models; however, it is not a good practise to elaborate
precisely a part of a model without viewing a sketch of its whole.

5. The ordering and normalisation
Subset, existence and usage dependencies of OPCM are reflexive, anti-symmetric,
transitive and acyclic. It is possible to define the partial order relation, generalizing
the previous dependencies and expressing: the subset dependency, if identifiers of
object types are coincident; the usage dependency, if the relation associates interfaces
or the interface and entity; the existence dependency, if the relation is hold between
entities. If schema elements are not ranked as entities and interfaces, the usage and
existence dependencies may overlap.

11th Panhellenic Conference in Informatics 348

The ordered conceptual model created by the proposed method meets the
conformance to normal forms similar to normal forms of the relational model. The
purpose of relational database schema normalization is to preserve the compatibility
during its evolution. Normalization allows avoiding data redundancy and anomalies
of data renewal.

The principles of normalization of object model include high cohesion and low
coupling, dependency inversion, Liskov substitution, open-closed, acyclic and stable
dependencies, interface segregation and others. From our point of view it is worth to
make normalization in conceptual level, because conceptual schema may have many
implementations (relational, XML etc.). Ordered conceptual schema S of relations R
has Projection/Join normal form if having constraints Σ for all schema components
Ri,Rj the partial order relation Ri≤Rj holds i,j∈ [1,n], generalizing subset, existence
and usage dependencies. Furthermore, schema is acyclic. This property is important
for behavioural schemas and for implementing model by XML schema.

One of possibilities to verify the conformance of conceptual schema to normal forms
is to present it with concept lattice and to apply methods of Formal Concept Analysis
(FCA) [Priestley (2002)], [Godin et. Al. (2005)], [Priss (2006)]. The concept lattice
for the formal context of Production IS is presented on Figures 4. The formal context
has instances (shown in brackets on Figure 4). Each instance has a number and formal
attributes related with it. In our example for validation of conceptual model fourteen
instances of its components (comprising one complete instance of conceptual schema)
are needed. Schema is invalid if it not satisfies relevant instances of problem domain.
Practically, for validation of schema the much more instances are needed.

It is important to note that ordered conceptual schemas comprise concept lattices.
This issue allows avoiding the growth of analysis scope problems that arise in
constructing lattices by means of formal methods. Concept lattices may be used to
analyze concept attributes, methods and constraints. Functions defined on concept
lattices are idempotent so conformance to lattice confirms the normalization of
conceptual schemas constructed using the proposed method.

Figure 4. A concept lattice for conceptual model on Figure 2

Software Engineering 349

5. Conclusion
The issues of this research confirm that the ordering and integrity constraints are
capable to improve conceptual models making them normalized, testable for
conformance to the problem domain, easier readable and understandable, and more
complete. The existing methods for development of conceptual models and integrity
constraints mostly are giving only declarative rules.

The interesting fact of this research is the evidence that empirical methods based on
the years of practice are converging to formal methodologies as the resulting models
obtained by the proposed method comprise lattices of formal concepts. Other fact is
the correspondence between ordered models and ontological recommendations for
conceptual modelling of information systems associated with the right identification,
rigid classifiers, compound things, dependent roles and phases. However, many
questions are not answered yet.

Our future work is addressed to looking for more ontological foundations from the
one side, and for elaboration of support to the proposed method in CASE tools from
the other side. While information technologies are encouraging, the CASE tools have
not unfolded their potential and require tremendous efforts.

6. References
Anda B., Sjoberg D.I.K. (2005), Investigating the Role of Use Case in the

Construction of Class Diagrams, Empirical Software Engineering, vol. 10, pp.
285-309.

Ceponiene, L., Nemuraitė, L. (2005), Design independent modeling of information
systems using UML and OCL, in Databases and Information Systems: selected
papers from the 6th International Baltic Conference on Databases and Information
Systems Riga, Latvia, June 06-09, 2004. Amsterdam: IOS Press, 2005. ISBN 1-
58603-485-5. pp. 224-237.

Debenham, J. (1997), An analysis of Database Rules, in Proc. IDEAS '97:
International Database Engineering and Applications Symposium, Montreal,
CANADA, ISBN: 0-8186-8114-4, pp.113−120.

ISO/TR 9007, (1987), Concepts and Terminology for the Conceptual Schema and
Information Base, ANSI, New York, pp. 120.

Godin R., Valtchev P. (2005), Formal concept analysis-based class hierarchy design
in object-oriented software development, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg Publishers, ISBN 978-3-540-27891-7, pp. 304-323.

Guizzardi, G., Wagner, G., Guarino, N., Sinderen, M. (2004), An Ontologically Well-
Founded Profile for UML Conceptual Model, in A.Person and J.Stirna (Eds.):
CAISE 2004, LNCS 3084, pp. 112-126.

http://csdl.computer.org/comp/proceedings/ideas/1997/8114/00/8114toc.htm
http://csdl.computer.org/comp/proceedings/ideas/1997/8114/00/8114toc.htm
http://www.springerlink.com/content/105633/

11th Panhellenic Conference in Informatics 350

Gustas, R., Gustiene, P. (2003) Towards the Enterprise engineering approach for
Information system modelling across organisational and technical boundaries, in
Proceedings of the fifth International Conference on Enterprise Information
Systems, vol. 3, Angers, France, pp. 77-88.

Halpin T. (2001), Information modeling and relational databases: From conceptual
analysis to logical design, Morgan Kaufmann Publisher, ISBN 1-0155-8606-726.

Mellor S.J., Balcer M.J. (2002) Executable UML. A foundation for model-driven
architecture, Addison-Wesley Publisher, Boston, ISBN 0-2017-4804-5.

Miliauskaitė, E., Nemuraitė, L. (2005a) Representation of integrity constraints in
conceptual models, Information technology and control, Kauno technologijos
universitetas, ISSN 1392-124X. Vol. 34-4, pp. 355-365.

Miliauskaite, E., Nemuraite, L. (2005b) Taxonomy of integrity constraints in
conceptual models, P.Isaias et all. (Eds.): Proceedings of the IADIS Virtual Multi
Conference On Computer Science and Information Systems, IADIS Press, ISBN:
972-8939-00-0, p. 247-254.

Nemuraite L., Paradauskas B. (2005), From use cases to well structured conceptual
schemas, in Proc. of 13th international conference Information Systems
Development: Advances in Theory, Practice, and Education, Vilnius, Lithuania,
September 9-11, 2004. Vol. 28. New York : Springer Science+Business Media,
pp. 303-314.

Priestley H.A. (2002), Ordered Sets and Complete Lattices, in International Summer
School and Workshop: Algebraic and Coalgebraic Methods in the Mathematics of
Program Construction, Lecture Notes in Computer Science, vol. 2297/2002,
Springer Berlin / Heidelberg Publishers, pp.21-78

Roussev B. (2002), Generating OCL Specifications and Class diagrams from Use
Cases: A Newtonian Approach, in Proc. HICSS’03: Proceedings of the 36th
Hawaii International Conference on System Sciences.

Svetinovic D., Daniel M. BerryMichael W. Godfrey. (2006), Increasing quality of
conceptual models: is object-oriented analysis that simple, in Proceedings of the
2006 international workshop on Role of abstraction in software
engineering, Shanghai, China, pp. 19-22.

Vongdoiwang W., Batanov N. B. (2006), An ontology-based procedure for
generating object model from text description, Journal Knowledge and
Information Systems, Springer London Publisher, Issue vol. 10, Number 1, pp. 93-
108.

Wyssusek, B., Klaus, H. (2005), On the foundation of the ontological foundation of
conceptual modeling grammars: the construction of the Bunge–Wand–Weber
ontology, in Proc. of the CAiSE '05 Workshops PHISE: 1st International Workshop
on Philosophical Foundations of Information Systems Engineering, Porto,
Portugal, pp. 583–593.

http://www.cs.kau.se/%7Egustas/student/em/paperonEMapproach.pdf
http://www.cs.kau.se/%7Egustas/student/em/paperonEMapproach.pdf
http://www.springerlink.com/content/2gahapr7ulkq/
http://www.springerlink.com/content/2gahapr7ulkq/
http://www.springerlink.com/content/105633/
http://portal.acm.org/results.cfm?query=author%3APP14275731&querydisp=author%3ADaniel%20M%2E%20Berry&coll=Portal&dl=GUIDE&CFID=8425943&CFTOKEN=86125418
http://portal.acm.org/results.cfm?query=author%3AP197134&querydisp=author%3AMichael%20W%2E%20Godfrey&coll=Portal&dl=GUIDE&CFID=8425943&CFTOKEN=86125418

