

StudentUML: An Educational Tool Supporting
Object-Oriented Analysis and Design

Ervin Ramollari 1 and Dimitris Dranidis 2

1 South East European Research Centre (SEERC)
17 Mitropoleos Str., 54624 Thessaloniki, GREECE

erramollari@seerc.info

2 Computer Science Department
CITY LIBERAL STUDIES

Affiliated Institution of the University of Sheffield
Tsimiski 13, 54624 Thessaloniki, GREECE

dranidis@city.academic.gr

Abstract
The Unified Modeling Language (UML) is commonly used in Computer Science curriculum
in order to teach object oriented analysis, design and programming. In this context, UML
CASE tools are useful to assist in modeling and automating routine tasks. However, available
tools are generally intended for use by professional developers to improve productivity and are
not suitable for educational purposes. Tools are generally difficult to learn and use, are
confusing to beginners, and ignore educational aspects. Existing educational tools also have
shortcomings, which are discussed in detail. Finally, we present a new UML tool,
StudentUML, which specifically addresses these issues. Emphasis is placed on the educational
nature, simplicity, and ability of the tool to ensure correctness and consistency of the models.

Keywords: Education, Teaching, UML, CASE tools, Object-oriented analysis and design.

1. Introduction
Modeling is a powerful technique that helps in managing the complexity of software
systems and communicating ideas. The dominating modeling notation in object
oriented development is the Unified Modeling Language (UML) [OMG (2006a)],
which has become the de facto standard in the industry and academia. UML, by
means of diagrams, describes the static structure of software in terms of objects and
classes, the dynamic behavior in terms of object interactions, and the functionality in
terms of use cases.

11th Panhellenic Conference in Informatics 364

Besides a notation, developers need assistance from Computer-Aided Software
Engineering (CASE) tools. Such tools emerged as an alternative to software
engineering techniques to improve on productivity [Mynatt et al (1989)]. They are
also used in academic environments for teaching object orientation and the UML
language itself. A number of CS courses use UML as the modeling language of
choice. Instructors are faced with the decision of choosing a suitable tool to support
such courses. However, most of the existing tools are designed for use by
professionals and not by students [Auer et al (2003), Buck et al (2000), Crahen et
al (2002), Turner et al (2005), Iivari (1996)]. They are usually overloaded with
features and UML syntax, thus causing confusion among beginners. Since their aim is
to improve productivity, professional tools assume their users have adequate
experience, and disregard educational features.

In this paper we introduce a new tool, StudentUML, which specifically addresses the
needs of students. Drawing from our experience of teaching object oriented analysis
and design and UML at both undergraduate and postgraduate level, we have
recognized the benefits of a tool tailored to the needs of the taught modules, which
could greatly assist students in their learning process. StudentUML is aiming to be
easy to learn and use through its simplicity, to maintain correctness and consistency
of models, and to support a student software development process.

This paper first reviews general UML CASE tools and then focuses on educational
tools. It critically evaluates these tools and presents the motivation for a new tool that
is specifically designed for educational purposes. Next, the general aims and
requirements are defined, and the paper proceeds with a short demonstration of
StudentUML. Conclusions and further research directions close the paper.

2. Background

2.1 UML CASE Tools
Numerous CASE tools supporting UML modeling have been developed by different
companies, which are commercial, free, or open source. The interested reader can
refer to [OD (2005a)] and [Godfrey (2006)] to view a comprehensive list of tens of
existing UML tools, along with a short description and a link to the official web site
for each one of them. In [OMG (2006b)], OMG publishes a list of companies that
produce or distribute UML 2.0 compliant tools.

There is a wide spectrum of UML tools that serve different purposes, have different
degrees of sophistication and portability, and incorporate various features. Smith
(2004) roughly divides UML-based tools into three categories: UML Drawing Tools,
UML Code-Centric Tools, and UML Framework Tools. In brief, UML drawing tools
are those that enable drawing of diagrams with limited restrictions [Smith (2004)]. An
example is Microsoft Visio. UML code-centric tools go one step further in

Software Engineering 365

sophistication and enable connection between static aspects of the UML model and
source code, usually through forward and reverse engineering [Smith (2004)]. Most
tools fall into this category. Two well-known examples are IBM Rational Rose, and
Borland Together. UML framework tools are the most sophisticated and provide a
complete code generation, including behavioral aspects of the UML model [Smith
(2004)]. Examples include IBM Rational Rose Real-Time, and I-Logix Rhapsody.
Generally speaking, when moving from drawing tools to framework tools, flexibility
decreases, while automation increases [Smith (2004)].

Features that modern UML CASE tools commonly support include: drawing
diagrams, repository support, forward/reverse engineering, round-trip engineering,
navigation, multi-user support, integration with other tools, exporting models to other
formats, versioning, printing support, scripting, pick lists for classes and methods, and
many others [Eriksson et al (1998), OD (2005a)]. On the other hand, they differ
regarding the portion of UML syntax and diagrams that are supported, compatibility
with UML 2.0, portability, programming language or IDE dependence, proprietary
extensions to standard UML, and so on.

2.2 Educational UML Tools
A number of studies [Burton et al (2004), Mynatt et al (1989), Ho (1992)] have
shown that the use of modeling CASE tools in education facilitates teaching of
concepts and improves productivity. We found that a very small number of UML
tools are available for educational purposes. Those that exist are usually personalized
for specific usages or academic programs. Below, we briefly present the following
tools: QuickUML, minimUML, UMLet, and Ideogramic UMLTM.

QuickUML [Crahen et al (2002), Alphonce et al (2003)] is a simple UML drawing
tool written specifically for beginners in object oriented programming. It supports
only design class diagrams, and only one at a time. It allows some limited forward
engineering to Java and C++ code, and reverse engineering from Java code to class
diagrams. QuickUML lacks validation and consistency maintenance capabilities, so
that the user is allowed to draw incorrect diagrams. It does not support working with
whole development projects, which consist of a number of diagrams, as most modern
UML tools do. The main strengths of QuickUML are its interface simplicity and ease
of learning.

MinimUML [Turner et al (2005)], similarly to QuickUML, follows a minimalist
approach [Carroll (1997)] by covering a small subset of the UML notation. Its authors
regard this subset as sufficient for the purpose of introductory OO classes.
MinimUML has support only for design class diagrams. Diagrams consist of two
basic elements: classes (design classes or interfaces), and connections (associations,
aggregations, realizations), which are treated in a generic way. The user is allowed to
specify their types in later phases during an iterative process. In addition, the tool

11th Panhellenic Conference in Informatics 366

introduces some other features that facilitate its usability, such as multiple selection,
undo/redo, cut and paste, flexible printing, and drag and drop. Finally, it provides
limited support for forward engineering to Java and C++. This tool has a number of
strengths that make it more appropriate for students. It has a simple and intuitive user
interface through which it is easier to learn and use. Also, some features, such as
labels explaining the type of UML elements, user notations, flexibility, and generic
treatment of classes and connections, make this tool appealing to beginners. However,
like QuickUML, minimUML does not support whole development projects and lacks
correctness and consistency capabilities.

UMLet [Auer et al (2003)] is a simple UML tool with a number of characteristics that
are useful for teaching and learning object orientation and the UML notation. It
covers a significant portion of the UML notation found in different types of UML
diagrams, but does not distinguish between the diagram types. It has a large and
intuitive drawing palette where various UML elements are displayed in the same way
they appear in the diagram. To increase drawing speed and avoid user distraction,
dialog boxes for editing UML constructs are avoided and replaced with a separate text
panel in the application window, where UML constructs are specified in the form of
simple markup text. These features make this tool easy to use for quickly drawing
diagrams, although not as easy to learn. UMLet does not go beyond mere sketching of
diagrams, however. It gives the user the flexibility to draw any diagram consisting of
any of the supported UML constructs, but without checking for consistency. The tool
does not distinguish between the different types of diagrams, and elements found in
different UML diagram types can be put in a single one. Diagrams are sketched
separately one at a time, and are not managed as part of a whole development project.
Finally, the tool does not have support for forward or reverse engineering.

Ideogramic UML [Hansen et al (2002), Ideogramic (2006)] is a more sophisticated
educational UML tool from Ideogramic. Unlike the previously discussed tools, this
one is commercial, not free, and not open source. Its scope is limited to design class
diagrams that are drawn one at a time and not as part of development projects.
Ideogramic UML introduces the useful paradigms of user gestures and collaborative
modeling. Collaboration is achieved with electronic whiteboards or light pens where
users draw objects that are intelligently recognized and transformed to UML
constructs. This capability engages students in active learning through visual
collaboration. Ideogramic UML has a simple and intuitive interface. The complexity
of the user interface and the number of menus is drastically reduced through the use
of context-sensitive pie menus that appear in the drawing area. As a result, the tool is
very easy to use and allows quick drawing of diagrams. However, the use of gestures
requires learning of different gestures corresponding to different UML elements,
which makes the tool learning curve slightly steeper. Finally, Ideogramic UML does
not have any support for forward or reverse engineering.

Software Engineering 367

Table 1 summarizes and compares the most relevant features of these four
educational tools.

Table 1. Comparison of Four Available Educational UML Tools

 QuickUML minimUML UMLet Ideogramic
UML

Support for projects - - - -
Class Diagrams ● ● ● ●

Interaction Diagrams - - - -
Use Case Diagrams - - ● -

Diagram Correctness - - - Limited
Project consistency - - - -

UML syntax Limited Limited Most Most
Forward engineering ●

(Java/C++)
●

(Java/C++)
- -

Reverse/Round-trip
engineering

●
(Java)

- - -

Ease of learning Easy Easy Moderate Moderate
Ease of use Easy Easy Easy Easy

Cost Free Free Free Not free
Source code Available Available Available Unavailable

3. Motivation behind StudentUML
Most available UML-based tools are designed for professional use. Smith (2004)
advocates the use of industry standard commercial-off-the-shelf (COTS) tools in
undergraduate courses. According to him, it is to the benefit of the student to have
hands-on experience with the tools of the trade. In addition, many vendors offer their
tools at a discount or for free for academic programs [Smith (2004)]. However, a
number of other studies have shown that professional tools are too complex to be
suitable for educational purposes [Auer et al (2003), Buck et al (2000), Crahen et
al (2002), Turner et al (2005), Iivari (1996)]. One reason is that they usually aim
to be fully compliant with the latest UML syntax and to offer a large number of
features [Flint et al (2004), Auer et al (2003), Crahen et al (2002), Turner et al
(2005)]. According to some authors [Flint et al (2004), Turner et al (2005), Carroll
(1997)], only a simplified subset of UML notation is needed to teach object oriented
software engineering courses. This subset includes the basic elements of class
diagrams [Turner et al (2005)], and interaction diagrams. Also, a large number of
features and a cluttered interface confuse students, who frequently have to face and
ignore functionality that is not needed [Hansen et al (2002)]. Therefore, professional
tools have steep learning curves and are unsuitable for use in education.

11th Panhellenic Conference in Informatics 368

In addition, some useful educational aspects including consistency checking, inter-
diagram conversions, educational hints, illustration of learned concepts, and so on, are
usually ignored as they are not required in professional development. Other issues
include high tool costs, proprietary UML syntax, high requirements on computing
resources, programming language dependency, and others [Auer et al (2003)].

Educational tools, on the other hand, have some useful characteristics, including ease
of learning, ease of use, limited subset of UML, limited illustration of learned
concepts (minimUML), collaborative learning with gestures (IdeogramicUML), as
well as basic forward and round-trip engineering. However, they have serious
shortcomings. None of them supports development projects with several diagrams,
interaction diagrams, consistency and validation capabilities, and important
educational features.

Relating to our past experience, we have identified other limitations with available
tools, and student needs that are not fulfilled by existing professional or educational
tools. In our curriculum a number of object orientation modules are taught, based on
UML, both at the undergraduate and postgraduate level. In “Object-Oriented
Programming” taught at the first undergraduate year, students are introduced for the
first time to objects. In this module a tool is required that is simple to learn and use,
without distracting students with complex UML syntax and functionality that is not
needed. Two other modules – “Object Oriented Analysis and Design” (undergraduate,
3rd year) and “Software Development” (postgraduate) impose other needs. Students of
these modules are exposed to iterative development of projects consisting of different
UML diagrams during design phase. Thus, in support of these courses a tool is
required that can handle complete development projects, maintain a consistent UML
model project-wide, and support the process that is followed.

Regarding the process that students follow, we have found that existing tools hardly
support it. Furthermore, existing tools do not distinguish diagrams to analysis and
design diagrams, a necessity when teaching object-oriented analysis and design.

Another shortcoming with existing tools is their poor diagram validation and
consistency checking capabilities. A UML project consists of a set of diagrams that
together describe a single system. There may be overlap between different diagrams
and the overlapping parts contain the risk of defects (inconsistencies). A study by
Lange et al (2006) has shown that a large number of such defects are frequently not
detected. A more alarming finding is that the defects that are not detected cause
serious misinterpretations later in the development lifecycle [Lange et al (2006)]. We
are familiar with such problems based on our experience. UML artifacts produced by
students during coursework usually have significant inconsistencies. These result not
only from poor group coordination and lack of attention, but also from lack of
knowledge. It is therefore essential that such defects be discovered and reported by
tools, and preferably be automatically repaired. Existing tools have little support for

Software Engineering 369

detecting such inconsistencies, probably because they are not considered as errors. It
would also be desirable to have inter-diagram conversion functionality and exporting
of elements from one diagram to another, keeping in mind that diagrams of different
types are related to one another.

As a result, we have recognized the need for a UML CASE tool tailored specifically
to support object orientation modules. It is envisioned to assist in lectures and labs, or
be used independently by students as a learning assistant.

4. Aims of StudentUML
The major aims of StudentUML result from the previous discussion of shortcomings
of existing tools, and student and module needs. The most important aims considered
in the development of StudentUML are its simplicity, correctness and consistency,
and its support for the student software development process. All these features aim
to promote the educational nature of StudentUML

4.1 Simplicity
One aspect of simplicity is the tool learning curve and ease of use. Towards this goal,
the tool provides an intuitive and user-friendly graphical user interface with minimum
cluttering. There are a limited number of menus and ways of interaction, so that the
user can learn the tool and draw diagrams in a minimum amount of time. Tooltips
explain the functions of different menus and buttons. Another aspect of simplicity is
the amount and complexity of UML syntax that is supported. We have tried to limit
this amount of UML to what is needed in the courses.

4.2 Consistency
Consistency is seen from two different points of view: internal diagram correctness
and inter-diagram consistency.

Regarding diagram correctness, the tool restricts the user from specifying incorrect
diagrams, without compromising flexibility. For instance, it does not allow the user to
add incorrect relationships in the design class diagram, such as a class realizing
another class instead of an interface, or an interface being an aggregation of classes.

Inter-diagram consistency, is a more important issue and at the same time neglected
issue. We address it by providing automated consistency checking between different
types of diagrams (for example, interaction diagrams against class diagrams). The
results of validation are given in the form of errors and warnings, and the user has the
option of automatically repairing the errors. Besides the benefit of finding defects and
correcting them, this feature has the desirable side effect of acting as a student
advisor. It provides hints about how different diagrams are related to each other and
how to avoid inconsistencies.

11th Panhellenic Conference in Informatics 370

Another way to address this issue is by supporting automatic conversion from one
type of diagram to another in the same project, by exchanging UML elements
between related diagrams, or by promoting analysis elements to design elements.

4.3 Process Support
One main requirement is that StudentUML should support the process that is taught to
or followed by students, although not enforce it.

The supported process is largely based on the process suggested by Craig Larman in
his popular textbook [Larman (2005)]. In this process various UML diagrams are
created iteratively. The developer starts with a use case diagram and use cases. From
these, system sequence diagrams (SSDs) that correspond to the use cases are created.
In parallel, domain analysis is performed, where concepts and relationships are
identified and presented in conceptual class diagrams (CCDs). During a transition
from OOA to OOD, the system messages in a SSD and the concepts from CCDs
inspire the identification of objects and their collaborations in an interaction diagram,
such as a sequence diagram (SD). Also, messages from SDs, and concepts and
attributes from CCDs, serve to determine software classes with attributes and
methods and their relationships in detail. They are represented in one or more design
class diagrams (DCDs). Finally, software classes from DCDs and object
collaborations from SDs serve to write code in an object-oriented programming
language, such as Java or C++.

The features of inter-diagram consistency checking, repairing, and conversions assist
the student process. Also, analysis artifacts should be promoted, on user’s discretion,
to design artifacts in the project. Finally, a desirable feature of StudentUML is
forward engineering to code, and reverse/round-trip engineering with code-model
synchronization.

5. Tool Functionality
StudentUML is written in JavaTM and therefore is platform-independent. The
graphical user interface provides a main project toolbar with functionality for
opening, closing, and saving complete projects. The user can also export diagrams to
different image formats. Each UML diagram is displayed in its own internal window,
consisting of a simple drawing palette and a drawing area.

Also, the tool offers the option of automatically checking consistency between
existing diagrams. For example, in Figure 1 the application requests input about
which diagrams to validate in the context of SD-DCD validation. Next, the
application presents the validation results in the forms of warnings and errors (Figure
2). Notice that the option of automatically fixing the errors (though not the warnings)
is provided.

Software Engineering 371

Figure 1. Selecting a DCD and a SD for Inter-Diagram Validation

Figure 2. Validation Results - Warnings and Errors

So far we have implemented full support for drawing system sequence, sequence,
conceptual class, and design class diagrams, project persistence and exporting, inter-
diagram consistency validation, and repair of consistency errors.

11th Panhellenic Conference in Informatics 372

6. Conclusions
In this paper we have identified a number of requirements that a UML tool suitable
for educational purposes should satisfy. In general terms, this tool should be easy to
learn and use by students, support correctness and consistency, provide educational
features, and support the process taught to students. After a review of professional
and educational tools that are available, we concluded that in general they do not
satisfy these requirements and have a number of shortcomings. This motivated the
need for a new tool, StudentUML, which we have developed. This report described
the features, design, and functionality of this new tool.

Work is ongoing to make StudentUML a fully-fledged CASE tool for students.
Features planned to be added are forward and reverse engineering (round-trip
engineering). These features are important, since they illustrate the relationship
between models and code and support iterative development. Another feature is
diagram conversion and exporting of UML elements between related diagrams in the
same project. Finally, some additional types of UML diagrams, such as use case
diagrams, will be added in the future. Extension of the tool should be relatively easy,
as the tool has been designed for modifiability and extensibility.

References
Alphonce C., Ventura P. (2003), “QuickUML: A tool to support iterative design and

code development”, in OOPSLA ’03, Anaheim, California, USA.
Auer M., Tschurtschenthaler T., Biffl S. (2003), “A flyweight UML modeling tool for

software development in heterogeneous environments”, in EUROMICRO’03.
Buck D., Stucki D. J. (2000), “Design early considered harmful: Graduated exposure

to complexity and structure based on levels of cognitive development”, in
Proceedings of the 31-st SIGCSE Technical Symposium on Computer Science
Education, Austin, Texas, USA.

Burton P. J., Bruhn R. E. (2004), “Using UML to facilitate the teaching of object-
oriented systems analysis and design”, JCSC, vol. 19, no. 3, pp. 278-290.

Carroll J. M. (1997), “Reconstructing minimalism”, in Proceedings of the 15th
annual international conference on Computer documentation, Salt Lake City,
Utah, United States, ACM Press.

Crahen E., Alphonce C., Ventura P. (2002), “QuickUML: A beginner’s UML tool”,
in OOPSLA ’02, Seattle, Washington, USA.

Eriksson H.-E., Penker, M. (1998), UML Toolkit, 1st edn, John Wiley & Sons, ISBN
0-471-19161-2.

Flint S., Gardner H., Boughton C. (2004), “Executable/Translatable UML in
computing education”, in Proceedings of Sixth Australasian Computing Education
Conference (ACE2004), Dunedin, New Zealand.

Software Engineering 373

Godfrey M. W. (2006), “My little UML (tools) page”,
http://plg.uwaterloo.ca/~migod/uml.html, [accessed 24/10/2006].

Hansen K. M., Ratzer A. V. (2002), “Tool support for collaborative teaching and
learning of object-oriented modeling”, in Proceedings of ITiCSE ’02, Aarhus,
Denmark.

Ho Y.-C. (1992), “To what extent will CASE tools assist users in the systems
development – A case study in academic environment”, in Proceedings of the
1992 ACM SIGCPR conference on Computer personnel research, Cincinnati,
Ohio, USA, ACM Press, pp. 93-96.

Ideogramic (2006), “Ideogramic UML”,
http://www.ideogramic.com/products/uml/pervasive-uml.html, [accessed
01/03/2006].

Iivari J. (1996), “Why are CASE tools not used”, Communications of the ACM, vol.
39, no. 10, pp. 94-103.

Lange C. F. J., Chaudron M. R. V. (2006), “Effects of defects in UML models – An
experimental investigation”, in ICSE’06, Shanghai, China.

Larman C. (2005), Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3rd edn, Prentice Hall.

Mynatt B. T., Kleventhal L. M. (1989), “A CASE primer for Computer Science
educators”, in Proceedings of the twentieth SIGCSE technical symposium on
Computer science education, Louisville, Kentucky, USA, ACM Press, pp. 122-
126.

Object Management Group (OMG) (2006a), OMG Unified Modeling Language
Specification. Version 2.0, Document formal/05-04-01, accessible at
http://www.omg.org/technology/documents/formal/uml.htm.

Object Management Group (OMG) (2006b), “UML resource page”,
http://www.uml.org/, [accessed 24/10/2006].

Objects by Design (OD) (2005a), “Choosing a UML modeling tool”,
http://www.objectsbydesign.com/tools/modeling_tools.html, [accessed
24/10/2006].

Objects by Design (OD) (2005b), “UML modeling tools”,
http://www.objectsbydesign.com/tools/umltools_byCompany.html, [accessed
24/02/2006].

Smith H. H. (2004), “On tool selection for illustrating the use of UML in system
development”, JSCS, vol. 19, no. 5, pp. 53-63.

Turner S. A., Perez-Quinones M. A., Edwards S. H. (2005), “minimUML: A
minimalist approach to UML diagramming for early Computer Science
education”, Computing Research Repository, http://arxiv.org/abs/cs.HC/0603121.

