

Methodology for Requirements Analysis and Design
in Development of Service-Oriented Information

Systems

Lina Ceponiene, Lina Nemuraite, Jonas Ceponis

Kaunas University of Technology, Studentu 50-315a, LT 51368 Kaunas, Lithuania,
lina.ceponiene@ktu.lt, lina.nemuraite@ktu.lt, jonas.ceponis@ktu.lt

Abstract
Service orientation and Model Driven Development are the pillars of modern Information
Systems. Service-oriented information systems are composed of loosely coupled and
interoperable services driven by requirements of users. New modelling facilities are proposed
to enable effective service development including more rigorous requirements definition,
reconciliation and transformations of requirements to software architectures. These facilities
are focused on modelling interactions and state transitions of services represented by
interfaces and entities of problem domain. Metamodels for requirements and design model
specification, algorithms for requirement reconciliation and transformation to design were
created using UML and OCL, and implemented in UML CASE tools.

Keywords: service-oriented, information system, requirements, MDD, MDA, UML, OCL.

1. Introduction
During development of modern information systems the extensive complex of
technologies is required, which would be difficult to tackle without the automation
tools. Requirements for software applications are constantly changing and thus the
development of software product continues to the end of its lifecycle. Furthermore,
the considerable part of the system under development encompasses schemas,
specifications, and program code, which can be automatically generated. Service-
oriented development would be ineffective without Model Driven automation.

Consequently, the Model Driven Development (MDD) methods gain in popularity.
These methods enable system design at more abstract – model – level and program
code generation from models, thus transforming application development to model

mailto:lina.ceponiene@ktu.lt
mailto:lina.nemuraite@ktu.lt
mailto:jonas.ceponis@ktu.lt

11th Panhellenic Conference in Informatics 376

development. The Object Management Group (OMG) organization manages Model
Driven Architecture (MDA) [Frankel (2003)], which is one of MDD methodologies.
Presently MDA concentrates on the last stages of development process and automates
transformations from Platform Independent Model (PIM) to Platform Specific Models
(PSM), and to program code. Initial development stages which encompass business
modelling, requirements analysis and specification, and domain modelling, are not
analyzed in detail.

Generation of meaningful program code of high quality is possible only if there is a
comprehensive and consistent information system model which describes its structure
and behaviour. This model should be defined in initial development stages,
independently not only from implementation platform (as PIM) but also from logical
application architecture. Thus such model would be adjustable not only to various
implementation platforms but also to various architectural decisions. In this work,
such model was named Design Independent Model (DIM) [Ceponiene et al. (2003)],
[Ceponiene et al. (2005a)], [Ceponiene et al. (2005b)], [Ceponiene et al. (2005c)]. It
is a detail requirements model comprehensively describing structure and behaviour of
information system under development. DIM differs from design model in the fact
that there are no design decisions in DIM – it does not include any control classes or
components. Proposed DIM consists of entities of problem domain and interfaces to
behaviour defining the sets of conceptual operations, constituting the basis for
service-oriented models.

The rest of the paper is organized as follows. In section 2 the related work is
analysed. Section 3 presents the overview of the proposed method. The first stage of
the method – initial requirements definition – is discussed in section 4. In section 5,
the structure of Design Independent Model is defined. Section 6 discusses the
problem of reconciliation of requirements. In Section 7 service design pattern and
transformation from requirements to design is described. Section 8 discusses the
implementation of the proposed method and finally, section 9 draws some
conclusions.

2. Related Work
Recently, OMG has issued the RFP for UML Profile and Metamodel for Services
[OMG (2006)], where requirements are stated to “complement existing UML
metamodel by defining an extension to UML to ensure complete and consistent
service specifications and implementations“. Our work addresses a part of OMG
requirements by concentrating on service-oriented modelling in the early stages and
linking it with Model Driven Development (Fig.1): modelling and reconciliation of
requirements and transition from requirements to design. In MDD methods neither
specification of requirements model, nor another important step – transformation
from requirements to design – is clearly defined.

Software Engineering 377

Business
model

Requirement
specification Design Implementation

CIM PIM PSM Program
code

Automatic
transformation

Automated reconciliation of
the model

Stages of IS development in general case

?

Initial
requirements

PSMPIM

Stages of IS development according to MDA standarts

Stages of the proposed method

not analyzed elements
elements developed manually
automated development

Business
model

Initial
requirements Program

code
DIM

Figure 1. Generic and MDA Stages of IS Development in Comparison with Our Work

Existing methods of information system development were analyzed for finding
solutions to the problems encompassing specification of requirements model, its
reconciliation and transformation to design model. Ideas of comprehensive
requirements modelling were based on [Astesiano et al. (2002)]. But rules for
transition from requirements to design models are not identified in this method.
Rational Unified Process [Jacobson et al. (1999)] is a very wide development process,
which accentuates iterative development and separation between requirements and
design models. But due to its volume, RUP can be used only after the process of
adaptation, which is similar to creating your own method, based on RUP. In opposite
to RUP, eXtreme Programming [Beck (1999)] accentuates fast development and
using as small amount of models as possible. ICONIX [Rosenberg et al. (2001)] is
somewhere between RUP and XP, it uses a relatively small amount of models and
offers a fast transition from requirements to code. But reconciliation of the system
model is not employed in ICONIX and the stages of requirements specification and
design are not strictly separated. Such separation is clearly defined in Catalysis
[D’Souza et al. (1999)] development process which also focuses on component based
development. MERODE [Dedene et al. (1994)], an event driven development
method, separates requirements and design models, and defines formal rules for
transition from one model to another, but it does not approach users and interactions.
All of the explored methods do not automate initial development stages analyzed in
our work.

MDA uses the Unified Modelling Language (UML) [OMG (2003a)]. UML is widely
accepted standard used for IS development, but there is a problem in reconciliation of

11th Panhellenic Conference in Informatics 378

UML models. A UML model of the system consists of several models – diagrams of
different kinds, expressing properties of different aspects of a system. The meaning of
each diagram kind can be given in isolation, but nevertheless each diagram describes
the view of the overall system. Many diagrams and their elements are overlapping
and represent the same things from different viewpoints. Existing universal CASE
tools do not have any means for definition of comprehensive requirements
specification, for its reconciliation and transformation into design models. There still
exist a lot of possibilities for improvement of IS development processes in CASE
tools and increase of the degree of automation of these processes.

In presented method semantics of information system is defined according to the
semantics of Labelled Transition Systems [Reggio et al. (2001)]. In UML, such
information system is presented as hierarchical state machine composed of interacting
state machines; state transitions here are triggered by external events and execution of
these transitions is constrained by rules dependent on possible states of entities. The
consistency of system model described in UML and OCL [OMG (2003b)] may be
ensured by integrating interactions and state transitions, and also by interconnecting
states of behavioural objects (services) and state describing objects (entities). This
part of the method is partially associated with the algorithms for generating state
machines from sequence diagrams [Makinen et al. (2000)], [Whittle et al. (2000)], but
these algorithms ensure only unidirectional transformation, whereas in our work the
algorithms for bidirectional transformations between sequence and state diagrams are
defined.

Design model is obtained from requirements model DIM by applying the architectural
pattern created on the base of [Gamma et al. (1995)]. During transformation from
requirements to design, DIM specification is allocated to elements of the pattern.

In service-oriented information systems two main concepts must be modelled: entities
and services. A possible way for implementing such system is the Web Services
Architecture. Due to the limits of size of this paper, the relation of our method with
abundant standards for services and MDA is not presented. In service-oriented
systems automation gives an obvious effect: the same conceptual model may be used
for generating program code, database and XML schemas, services specifications in
WSDL, etc. In the proposed method this list is expanded: it is also possible to
generate design model and ensure the consistency of this model.

3. The Method Overview
Process of development of information system, using DIM, may be defined as a
sequence of transformations between models: , here I indicates
implementation. Process investigated in this work is development of DIM and going

from DIM to PIM: , where integrity must be ensured for DIM, PIM and

IPSMPIMDIM
TTT 321
→→→

PIMDIM
T1
→

Software Engineering 379

between DIM and PIM. The integrity means consolidation of overall structure and
behaviour of the system, represented in different views, expressed in UML use case,
class, interaction diagrams and state machines. The proposed method for Service-
oriented Information System Requirements Analysis and Transformation to Design
consists of three main stages: initial requirements specification, DIM development,
and generation of PIM (Fig.2).

Initial requirements specification
Creating use case

model
Creating domain

model
Use case diagram

DIM development

Developing DIM specification
Creating

actor model
Creating

interface model
Updating

domain model

Reconciling DIM specification
Creating state

diagrams
Creating sequence

diagrams

Generation of PIM
Generating actor

service model
Generating service

model
Generating domain

model

Domain class
diagram

DIM interfaces and
actors class diagram

DIM entities
class diagram

Services
class diagram

State Coordinator
class diagram

Actor services
class diagram

System interfaces
class diagram

Entities
class diagram

Operation messages
class diagrams

Operation constraints
class diagrams

Figure 2. Method for Requirements Analysis and Transformation to Design

4. Initial Requirements Definition
Detail requirements model must define state and behaviour of IS. But before creating
the formal requirements definition, these requirements are described informally. In
this work, the template for initial textual description of requirements is used. This
template is based on UML use case diagram and domain model of the system. The
domain model serves as a glossary of terms that can be used in writing use cases. Use
case model is used to capture the user requirements of the system by detailing all the
actions that users can perform. Each action of the use case is described using pre and
post conditions. The actors and domain classes in use case description are written
starting with capital letter to ensure that they are easy to identify. As new objects are
discovered during the use case description the domain model is updated.

11th Panhellenic Conference in Informatics 380

5. Design Independent Model
Design Independent Model (DIM) is proposed for definition of requirements for
development of wide range of information systems composed of services.

Behaviour of IS is tightly related with its state and has many aspects: interactions,
state transitions, control flows and data flows. These aspects are represented by
different kinds of UML diagrams comprising views under the same model of target
IS. The possibility to achieve consistency of requirements is based on Design
Independent Model (DIM). DIM represents overall structure and behaviour of the
system, but in contrast to PIM, no design decisions are made in DIM. In DIM, class,
sequence and state diagrams are used, supported with OCL constraints; all kinds of
diagrams are related. Some diagrams are derivable from others. DIM composition
well conforms to requirements for development of services and systems of services
where concepts of entities may be distinguished from concepts of services, and
interactions are playing the crucial role ensuring “user-oriented” service models.

In general case DIM may be represented visually by stereotyped UML class,
sequence, and state diagrams with OCL constraints following principles of precise
modelling and contract-based development. In DIM, use cases are mapped to
interfaces of the target system, associated with actors – service users – and
communicating with external systems (service providers), whose interfaces must be
accessed by the target system to provide requested services. Interfaces are defined by
the sets of operations identified from steps of use case specifications. Every operation
is defined by its signature, pre and post conditions. Besides the interfaces, DIM
includes actors, entities and states of entities modelling the state of problem domain.

For development of DIM, one or more sequence diagrams for every use case are
constructed from specifications of use cases. These sequence diagrams must represent
all desirable interactions between actors (service users), interfaces of the system and
possibly the interfaces to external systems, if they are required to fulfil service
requests. Sequence diagrams represent interaction related aspect of behavioural
requirements. They are suitable for modelling choreography and orchestrations that
are of the primary importance for service-oriented systems [Ceponiene, 2005b]. The
“engine” of behaviour of object system is the state machine; semantics of functioning
information system may be represented by transition system, affected by external
events, where interactions between different actors and parts of the system take place
and system moves from one compound state to another.

6. Reconciliation of Requirements
Elements of class, sequence diagrams and state machines are interlinked in UML
metamodel, but relationships among them have a high degree of abstraction. Such
flexibility supports different kinds of usage of UML, but in our case it is necessary to
tie models for assurance of consistency between different views of the same system.

Software Engineering 381

The reconciliation of model of system under development is based on integration
between states of entities and states of active classes, and integration between
interactions and state transitions. The particular attention is devoted to integration of
interactions with state machines, which are specialized as state machines of entities
and interfaces to behaviour. Explicit separation and reconciliation of states of entities
with states of services is also accentuated. Interactions are not directly integrated with
state machines in UML metamodel. Such integration is necessary for harmonization
of IS model irrespective of development phase. In this work the algorithm is proposed
for bidirectional transformations between sequence and state diagrams. There are
many works on this topic, but bidirectional transformations are not possible.

For the integration of interactions with state machines UML metamodel was analysed
and it was found that for this purpose some adjustments to UML metamodel must be
made: in sequence diagram two types of messages are distinguished: Requests and
Responses and constraint ensuring connection between Request and Response
Messages is created, thus ensuring the possibility of tracking which Response is the
answer to which Request (Fig.3); events are specialized into four subtypes: Sent
Request, Received Request, Sent Response, and Received Response; information
about the senders and receivers of events is captured in state machine, thus ensuring
possibility to re-create sequence diagrams from state machines.

Interface

State

0..n

1

0..n

InterfaceStateMachine 1

0..n

1

0..n

0..n
1

0..n
SequenceDiagram

Operation

GeneralOrdering

Lifeline0..n

1

0..n

1

InterfaceTransition

1

0..n

+target 1
1

0..n

+source
1

11

0..n

Message

11

0..n

Event

1

0..n

1

0..n

0..n

1

+toAfter
0..n

+before
1

0..n

1

+toBefore
0..n

+after1

0..n

1

0..n

1

0..1

0..1

+received 0..1

+receivedOn
0..1

0..1

0..1

+send
0..1

+sendDuring
0..1

0..1

0..1

+sendMessageEnd

0..1
+sendEvent

0..1
0..1

0..1+receiveMessageEnd
0..1

+receiveEvent
0..1

Classifier

0..n

+owner
1

+role 0..n Actor

Classifier
0..n 0..10..n

+sender
0..1

0..n

0..1

0..n+receiver

0..1

0..n0..n

1

Request Response

0..11
+responseTo

1 0..1

Figure 3. Fragment of DIM Metamodel Describing Integration of Diagrams

As events are present both in sequence diagrams and in state machines, the main
problem is to map messages, sent between interfaces from sequence diagrams, to
states and transitions represented in state machines of these interfaces. The algorithms

11th Panhellenic Conference in Informatics 382

for bidirectional transformations between sequence and state diagrams are specified
in OCL. The detail description of these algorithms is presented in [Ceponiene et al.
(2005c)]. The final definition of requirements is represented by class diagrams of
actors, interfaces and entities with respective constraints. It is the most informative
view, from which design model may be obtained, but in order to develop this view
comprehensively it is necessary to consider and integrate other views.

7. Transformation from Requirements to Design Models
This section is devoted to transformation from design independent model to design
(PIM). Design model differs from requirements model in some aspects: design model
is supplemented with control classes or components, methods for operations must be
elaborated. In this work, the architectural design is considered, during which elements
of requirements specification are allocated to architectural elements. For service-
oriented design, the State Coordinator pattern was constructed on the base of classical
Facade and State patterns. The purpose of Coordinator is the same as of other design
patterns: to “normalise” behaviour, discovering recurring activities and concentrating
them in separate classes thus making the cohesive units of behaviour. In services
execution environment, such recurring behaviour is receiving/sending of messages,
checking context and selecting services for execution. Operations of services must be
stateless so the information about states is captured by entities, and all constraints
describing services subject to state changes are kept in Constraint base. Coordinator
and Checker classes perform handling of incoming messages and checking their
context; if preconditions of requested services are satisfied (according to information
about states of information entities) the acceptance messages are sent and services are
delivered according contract, possibly in collaboration with other (internal or
external) services. If preconditions are unsatisfied, the exception messages are sent.
Checking of postconditions is used for unfolding the expressions of sending messages
to other services. The Checker may be implemented in different ways. In a simple
case, the pair of checking operations might be created for every service in the system.
In an advanced case, it is possible to design the rule engine that is able to add, delete,
read, check and transform operation constraints stored declaratively in the base.

The detail description of transformations from DIM to PIM, based on State
Coordination pattern, is presented in [Ceponiene et al. (2005b)]. There are three main
transformations: DIM actors are transformed to PIM actor services, DIM interfaces
are transformed to PIM services, DIM entities are transformed to PIM entities.

8. Implementation of the Proposed Method
For the implementation of the proposed method in UML CASE tools, UML profiles
for DIM, PIM and for transformation from DIM to PIM were created. The proposed
algorithms were implemented as prototypes in two CASE tools. In ArgoUML tool the

Software Engineering 383

prototype of the module for reconciliation of sequence and state diagrams was
implemented, which enables state diagram generation from sequence diagrams and
vice versa. Such extensions may be done for various UML CASE tools complying
with OMG standards. State Coordinator pattern was implemented using model library
in MagicDraw tool where the prototype of plug-in for checking DIM and
transforming it to design model was created. The method was used for the
development of Publication Agency services system.

The principles applied in this work can be used for a formalization of other suitable
design methods and their implementation in CASE tools. Suitable design methods are
those that can be described by formal rules. Organizations developing software can
use the proposed methodology for automation of their own development methods
starting from requirements specification. The proposed methodology would be
especially useful for organizations practicing the software development in a large-
scale and using the conception of Software Factories.

9. Conclusion
New possibilities to formalize IS design process and make it more „engineering
discipline“ can be achieved by separating the requirement definition and design
stages, strictly describing requirement and design models and transition between these
stages. Such features are not explicitly defined in existing development methods, so
design processes remain empiric till now.

For bringing the principles of model driven architecture to the earlier system
development stage, comprehensive requirement model must be created which defines
the state and behaviour of system independently not only from implementation
platform, but also from architectural design. We emphasize “behaviour” because the
benefits for design of service-oriented systems and the real potential of Model Driven
Architecture are based on rigorous state and behaviour models.

The practical application of the proposed method is more significant for systems
which are developed considering their further maintainability. Software service
development companies can use the proposed methodology for automation of their
own development processes starting from requirements specification. The proposed
methodology would be especially useful for the development in large-scale when the
support for created systems and reuse of models in similar projects is a challenge.

References
Astesiano, E., Reggio, G. (2002), Knowledge Structuring and Representation in

Requirement Specification, Technical Report. DISI-Universita di Genova, Italy.
Beck. K. (1999), Extreme Programming Explained: Embrace Change, Addison-

Wesley, Reading, Massachusetts, ISBN 0201616416.

11th Panhellenic Conference in Informatics 384

Ceponiene, L., Nemuraite, L., Paradauskas, B. (2003), Design of Schemas of State
and Behavior for Emerging Information Systems, in Proc. Pre-Conference
Workshop of VLDB 2003, pp. 27-31.

Ceponiene, L., Nemuraite, L. (2005a), Design independent modeling of information
systems using UML and OCL, Databases and Information Systems: Selected
Papers from the Sixth International Baltic Conference DB&IS'2004, Frontiers in
Artificial Intelligence and Applications, vol. 118, pp. 224-237.

Ceponiene, L., Nemuraite, L. (2005b), Transformation from Requirements to Design
for Service Oriented Information Systems, in Proc. ADBIS 2005: Advances in
Databases and Information Systems, Tallinn, Estonia, pp. 164-177.

Ceponiene, L., Nemuraite, L. (2005c), Transformations of UML diagrams for
reconciliation of requirements, in Proc. 13th International Conference Information
Systems Development: Advances in Theory, Practice, and Education, vol. 28, pp.
289-301.

D’Souza, D. F., Wills, A. C. (1999), Objects, Components, and Frameworks with
UML. The Catalysis Approach, Addison Wesley, ISBN 0201310120.

Dedene, G., Snoeck, M. (1994), M.E.R.O.DE.: A Model-driven Entity-Relationship
Object-oriented DEvelopment method, ACM SIGSOFT Software Engineering
Notes, vol. 13, no. 3, pp.51-61.

Frankel, D. (2003), Model Driven Architecture: Applying MDA to Enterprise
Computing, John Wiley & Sons, ISBN 0-471-31920-1.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995), Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional, ISBN
0201633612.

Jacobson, I., Booch, G., Rumbaugh, J. (1999), The Unified Software Development
process, Addison-Wesley Longman Publishing Co., ISBN 0201571692.

Mäkinen, E., Systä, T. (2000), An Interactive approach for synthesizing UML
statechart diagrams from Sequence Diagrams, in Proc. OOPSLA 2000 Workshop
Scenario-based round-trip engineering, pp. 7-12.

OMG (2003a), Unified Modeling Language Superstructure Specification. Version
2.0, OMG Document ptc/03-08-02

OMG (2003b), Unified Modeling Language: OCL Version 2.0, OMG Document
ptc/03-08-08.

OMG (2006), UML Profile and Metamodel for Services (UPMS), Request For
Proposal, OMG Document soa/06-09-09.

Reggio, G., Cerioli, M., Astesiano, E. (2001), Towards a Rigorous Semantics of UML
Supporting Its Multiview Approach, LNCS, vol. 2029, pp. 171 - 186.

Rosenberg, D., Scott, K. (2001), Applying Use Case Driven Object Modeling with
UML: An Annotated e-Commerce Example, Addison Wesley, ISBN 0201730391.

Whittle, J., Schumann, J. (2000), Generating Statechart Designs From Scenarios, in
Proc. 22nd International Conference on Software Engineering, pp. 314-323.

http://portal.acm.org/citation.cfm?id=309683&coll=Portal&dl=GUIDE&CFID=8523916&CFTOKEN=48350469
http://portal.acm.org/citation.cfm?id=309683&coll=Portal&dl=GUIDE&CFID=8523916&CFTOKEN=48350469

