

Automatically Annotating the ODP Web
Taxonomy

Christiana Christophi Demetrios Zeinalipour-Yazti † Marios

D. Dikaiakos Georgios Paliouras ‡
†

†

† Department of Computer Science

University of Cyprus, CY-1678, Nicosia, Cyprus
cs98cc1, dzeina, mdd@cs.ucy.ac.cy

‡ Institute of Informatics and Telecommunications,

National Center for Scientific Research ''Demokritos''
Athens, Greece

paliourg@iit.demokritos.gr

Abstract
 In this paper we present the ideas and algorithms developed around our KeyGen Web
Taxonomy Annotation engine. KeyGen annotates the Open Directory Project, also known as
Dmoz, with meaningful and previously unknown keywords by utilizing domain knowledge
extracted from the WWW. We present two algorithms: i) The PageParse Algorithm, which
efficiently extracts keywords from Web Taxonomies using a combination of local and global
scores, and ii) the Support Algorithm, an I/O optimized algorithm for coalescing hierarchies of
keywords. We then present the results: i) from constructing a richly annotated ODP Web
taxonomy and ii) from evaluating the correctness of this structure by performing an automated
classification of Web-pages.

1. Introduction

 Thematic taxonomies are tree structures that organize knowledge domains as
hierarchies of concepts (topics). The most specific concepts are placed at the leaves
of these hierarchies while higher-level concepts are assigned to internal tree-nodes.
Thematic taxonomies have been used in the establishment of Web taxonomies ever
since the advent of the WWW (e.g. Yahoo!). Web taxonomies comprise large Web-
page repositories whose documents are classified in the various categories (concepts)
of selected thematic taxonomies. Web taxonomies are used to enhance the
effectiveness of information retrieval on the Web representing an alternative approach
to keyword-based searching or hypertext navigation [6]. Web taxonomies have also
been used effectively to guide user navigation within large Web directories (portals),
to drive focused crawlers, to support categorized searching, document classification

11th Panhellenic Conference in Informatics 398

[20] and personalization [5,8,11]. The construction of Web taxonomies is currently
done manually and involves significant effort and cost, although some approaches
have also studied automated techniques to do so [19]. The URLs within a given
directory might appear either alphabetically (e.g. DMOZ), by the Pagerank of the
specific Webpage (e.g. Google Directory) or using a ranking that is deducted through
other means [13].

The Open Directory Project (ODP), also known as Dmoz [2], is currently the
largest, most comprehensive, human-edited Web Taxonomy. It is constructed and
maintained by volunteer editors who insert manually new pages in their category of
expertise and annotate these pages with semantic information. ODP classifies over 4
million sites into 590,000 categories with the help of 75,151 editors (circa March
2007). Typical ODP annotations provide short descriptions of the classified pages and
associations with other Web-pages. These annotations are provided by the editors
based on their personal rules of fairness and objectivity. While these annotations
usually capture correctly the meaning of the respective pages, they fail to capture all
the important keywords that characterize a given page.

Manual classification of Web-pages into a predefined Web taxonomy structure
has been efficient and practical over the years, as this has been demonstrated by the
longevity of Yahoo and Dmoz, but annotating these taxonomies is a more challenging
problem with no adequate solutions to this day. In particular, current annotations do
not allow users to efficiently discriminate in real-time between a large number of
concepts or pages that fall under the same category. An erroneous navigation decision
can easily divert the user away from the desired resources creating in that way
frustration and uncertainty about the effectiveness of the taxonomy.

In this paper we propose an efficient solution to the problem of automatic
annotation of large Web taxonomies. Our solution exploits the taxonomy editor's
knowledge, which is embedded in the structure of the taxonomy itself and analyzes
the page content. Recall that the classification of Web-pages in such taxonomies is
traditionally carried out by the editors thus is accurate and relevant. Our ideas are
developed in the context of the KeyGen system, a high performance system that
utilizes the Web-pages referred through the Open Directory Project in order to enrich
ODP with meaningful and previously unknown annotations. KeyGen combines
powerful information retrieval and indexing techniques to extract keywords from a
massive corpus of Web-pages classified in the ODP, and to group keywords into
thematic, weighted keyword-sets.

KeyGen initializes its operation by downloading the Open Directory Project
(ODP) taxonomy RDF structure [2]. This provides the system with a flat list of m
URLs. It then crawls all the respective URLs to a local repository and processes the
acquired data in order to construct a lexicon that can be utilized to enrich the ODP
taxonomy with new keywords. This process proceeds in the following phases: i) The
Keyword Extraction Phase using PageParse and ii) the Concept Hierarchy
Annotation Phase using the Support Algorithm.

Web Search and Mining – Information Retrieval 399

Our Contribution
• We propose and evaluate PageParse, which is an efficient and scalable technique
for extracting keywords from pages that are referred through Web taxonomies, using
a combination of local and global weighting scores.
• We propose the Support Algorithm, which efficiently merges keyword sets using a
threshold that prunes away keywords with a low support. Our scheme is designed to
optimize I/O performance, as this parameter is of major importance in large
repositories of documents.
• We provide experimental results which were obtain from a real ODP Web
taxonomy snapshot, which consists of more than 4.5 million keywords.

2 Related Work
In this section we provide an overview of related research work. Although the
problem of extracting semantically correlated keywords from a corpus of documents
or the WWW, as well the problem of classifying Web-Pages into a pre-constructed
taxonomy, are both well studied, exploiting large human-edited Web taxonomies in
order to achieve both tasks has not been studied in any other context.

Document Classification in Thematic Taxonomies
The automatic annotation of Web Taxonomies studied in this paper is quite different
from the typical supervised or unsupervised classification problem in the context of
Web Taxonomies [4,12,23]. In the classification problem, we start out from an empty
taxonomy of predefined concepts T and some unclassified document u , in order to
assign to the appropriate topic in u T . In our context, T is already partially or fully
constructed by editors, who manually insert URLs in the respective categories, thus
there is no requirement to bootstrap [4] the taxonomy. The challenge in our context
is to automatically annotate the taxonomy T with new keyword annotations, in such
a manner that T can be exploited by taxonomy users for better navigation, by
focused crawlers to contextually prioritize their crawling sequence and by other
applications that take a Web taxonomy as an input.

Semantically-Correlated Keyword-Sets
Constructing a keyword-enriched taxonomy creates in essence a hierarchy of
semantically correlated keyword-sets. There are many tools for creating such
semantically correlated keyword-sets [3,25], but none of these takes into account the
hierarchical relation between these keywords. For instance, Google Sets [1], a
research tool that allows users to automatically create sets of items from a few
examples, expands a small number of representative candidates from a given concept
given by the users. By providing terms, such as bmw,vw,audi, the system lists all
available car manufacturers. However this service only considers a flat structure of

11th Panhellenic Conference in Informatics 400

keywords rather than a hierarchy. This Query By Example paradigm has been
extensively used in content-based image retrieval (e.g. the QBIC [10] project at IBM
Almaden), content-based audio retrieval [22] as well as SQL databases (Microsoft
Access) and is appropriate when a query-set is available.

Web Taxonomies
The Open Directory Project and Web Taxonomies in general, have been utilized by a
number of other projects, because they organize the WWW into a hierarchy of high-
quality recommendations. In particular, Web taxonomies are used to enhance the
effectiveness of information retrieval on the Web, representing an alternative
approach to keyword-based searching or hypertext navigation [6]. Web taxonomies
have also been used effectively to guide user navigation within large Web directories
(portals), to drive focused crawlers, and to support categorized searching and
document classification [4,5,8,11,21,18]. The ODP taxonomy has been utilized in the
context of personalized Web search [14,9,15] where it refines query answers that are
returned through general purpose search engines. The ODP structure has also been
utilized by Chakrabarti et al. in [7], in order to study the topic properties of the Web.

3 PageParse: The Keyword Extraction Algorithm

In this section we describe the intuition behind the PageParse keyword extraction
algorithm, the module that extracts keywords from pages referred through the ODP
taxonomy. Note that the ODP directory has already been downloaded to local storage
by our Web Crawler at this point.

3.1 Pre-Processing Phase

Let W = denote our collection of m Web pages. In the first phase of
PageParse, we extract all the keywords from the collection W and create a set of

},...,,{ 21 mwww
r

keywords . Recall that Web-pages in our Information Repository
are documents encoded in HTML. HTML represents a primitive structure of each
document through the use of tags that specify document features such as the title, the
main body, various headings, characteristic keywords, and anchors. Intuitively, terms
that appear in the title, header, keyword meta-tags or have special typesetting
demarcation (bold, emphasis, etc.) can be considered to be semantically more
important than plain document text for the characterization of the document's
contents. For this reason, KeyGen exploits the Web-page structure by assigning
different importance weights to terms according to the HTML tag that they are
assigned (see Table 1).

},...,{= 21 rkkkK

Web Search and Mining – Information Retrieval 401

Table 1: HTML Tag Classes: KeyGen calculates the frequency of appearance of a
term in each of the seven classes of HTML and produces a Term Frequency Vector
(TFV)

 Class HTML Tags
1

2

3

4

5

6

7

Title

 Meta Data

 Headings 1,2

 Headings 3-6

Anchor

Emphasized

Plain Text

TITLE

 META

 2,1 HH

 61 HH −

 A

ULOLDLEMSTRONGIB
 Everything else

In order to avoid commonly appearing words, our system utilizes a stop-word list
of keywords, eliminating in that way frequently-used words, such as ``and,'' ``yes,''
``me,'' ``do,'' ``take'', which do not provide any semantic benefit to our lexicon. We
furthermore apply the widely used Porter stemming algorithm [16], in order to reduce
common morphological and inflectional endings from words in our list of keywords
K .

3.2 Weighting Scheme

A document (or downloaded URL) in our setting, is represented as a vector in a r -
dimensional Euclidean space, where r is the size of all the unique keywords in the
repository. The coordinate (weight) of each term in each document in this space is
defined as the product of three parameters depicted in Equation (1):

 jiijij NGLw ××= (1)

1. Local Weight (): The Term Frequency Element of word i in
document

ijL ijL
j , which denotes the significance of a term in a particular

document;
2. Global Weight (): The Collection Frequency Element of word ,

which denotes the importance of the term in the whole Information
Repository, and

iG i

11th Panhellenic Conference in Informatics 402

3. Normalization Factor (): The Length Normalization Element of
document

jN
j , which is used to avoid the bias of longer documents over

shorter ones.

Many different techniques have been proposed for calculating each of these

factors. The modularity of KeyGen enables the easy integration of different methods.
Currently, KeyGen implements the Term Frequency (TF) as a local weight, the
Inverted Document Frequency (IDF) as a global weight and Cosine (COSN) as a
normalization length. Therefore equation (1) will be transformed to equation (2).

 jiijij COSNIDFTFw ××= (2)

Term Frequency () is the frequency of occurrence of term i in document ijTF

j . Inverse Document Frequency () suggests that a good term exhibits low
collection frequency. Cosine Normalization () is a popular normalization
factor; it normalizes the weighted document vector so that the magnitude of the
weights is one.

iIDF

jCOSN

4 The Support Algorithm: Merging the Keywords

In this section we present the Support Algorithm, which recursively coalesces the

keyword-sets identified during the PageParse phase into a keyword-enriched concept
hierarchy . Since we have to cope with a very large collection of
concepts and Web-pages stored on secondary storage, we seek to optimize I/O access.
In the experimental section, we will show that our collection consists of over
1,000,000 Web-pages classified in more than 78,000 concepts. Our algorithm has a
linear time complexity of

},...,,{= 21 mtttT

)(mnO + , where is the number of Web-pages
 and is the number of concepts .

n
},...,,{= 21 nwwwW m },...,,{= 21 mcccC

4.1 Support Algorithm Description

The Support Algorithm is a recursive algorithm that is highly optimized for I/O

efficiency. In particular, our algorithm merges the keyword-sets, available for each
Web-page, using a single linear scan over the respective local repository.

Our algorithm performs a Depth-First-Traversal of the tree taxonomy T . At
each leaf level, it executes the PageParse algorithm on all the Web-pages referenced
from within the given level (See Algorithm 1, line 3-9). This produces a set of

Web Search and Mining – Information Retrieval 403

keywords per Web-page (). The algorithm then hashes all the keywords
located in , into an in-memory hash table () in order to enable
more efficient joins between keyword-sets in the subsequent steps. Each bucket of

 maintains both the keyword and the weight of each respective keyword.
The weight will be utilized in order to remove keywords that have a weight
() below a given threshold.

keyset
keyset pagehash

pagehash

support

While obtaining the appropriate keywords from a given Web-page, is
merged with the rest of the keywords that are located at the current level of the
taxonomy (levelhash). In order to achieve this task, we have to merge two

pagehash

11th Panhellenic Conference in Informatics 404

hashtables of size and respectively. This is a fairly cheap
task that can be achieved in linear time , since each insertion in

 is performed in . If we chose to implement this procedure without
hashtables, we would need as each of the

 insertions would require . In general, given

|| levelhash || pagehash
|)(| pagehashO

levelhash (1)O
|)|*|(| levelhashpagehashO

|| pagehash |)(| levelhashO K keysets,

each with an average size of l , would require time in the absence of the
hashtables, while our approach requires only time for the hashing and

 time for the merging (i.e. again). Finally note that both
 and are already in memory, thus this function is extremely

fast.

)(KlO
)*(KlO

)*(KlO)*(KlO
pagehash levelhash

After the tables are created at the leaf levels of the tree levelhash T , we
proceed with sorting of these hashtables in order to identify the keywords above a
certain threshold. This is illustrated in lines 11 to 25 of Algorithm 1. The threshold τ ,
is a user-defined parameter which identifies the minimum weight a keyword should
have in order to be retained for the given level of the taxonomy.

5 Experimental Evaluation

In this section we present our datasets, evaluation parameters and evaluation results.
Our system configuration includes a non-exclusive Solaris machine with 4 CPUs and
8GB RAM.

5.1 Description of Datasets

Our dataset consists of the first 6 levels of the ODP Web taxonomy along with their
respective Web-pages. In order to obtain this dataset we started out by downloading
the ODP directory dump in RDF-XML 1. We then performed a breadth first traversal
for 6 levels of the ODP structure and generated a seed list of 1,153,086 URLs (coined
the ODP seed list). The seed list was provided as an input to the open source
WebRace crawler [26], which downloaded the respective pages into our local
repository. Since many of the given URLs were either not available at the time of our
crawl, or had been completely eliminated from the respective Web servers, we were
only able to download the 91% of the complete list (i.e. 1,046,021 URLs). The
downloaded Web-pages required about 4GB of hard drive in a compressed form.
Since our intention was to build a multilingual corpus of semantically correlated
keywords for each given topic, we did not limit our crawl to the content of a specific

1http://rdf.dmoz.org/

Web Search and Mining – Information Retrieval 405

language but rather utilized all of them. We note that 257,978 pages were listed under
the top-level concept Top/World, which are pages classified as non-English.

5.2 Generating the Lexicon
We processed the first 6 levels of the ODP Web taxonomy, which were previously
stored to local storage, using the PageParse algorithm. This resulted in a collection of
4,634,247 unique (and stemmed) keywords. These keywords represent 78,312 unique
topics. By excluding the Top/World branch of the ODP structure, which includes
mainly non-English content, we derived a sub-lexicon of 3,468,071 keywords and
65,165 topics. This shows that our system is able to uncover an extremely large
number of keywords and topics.

By analyzing our acquired data we found that each topic features at least one
keyword, at most 300K keywords and on average 1,689 keywords. Although each
topic usually contains several keywords, many of these keywords have a low weight.
These keywords will be excluded using the user defined pruning threshold τ and will
not be utilized to characterize a given topic. In an attempt to limit the words to
English ones, we removed the Web-pages that belonged to topics under Top/World.
The majority of these pages are multi-lingual. In the graph in Figure 1 it is illustrated
how the number increases rapidly when pages that include non-English pages are
processed, as opposed to the case where non-English pages are removed.

Fig. 1. Increase of number of keywords as the number of Web-pages increases

11th Panhellenic Conference in Informatics 406

5.3. Evaluating Precision through Web Page Classification

In the second experimental series, we perform a classification of Web-Pages using the
keyword-annotated ODP structure constructed during the previous process similarly
to [20]. The intuition behind these experiments is that the improved keyword-
annotated topic keywords should be able to more accurately classify a given URL to
some topic. Note that the classification of URLs into topics, in a real setting, is a
manual process which is conducted by editors based on their domain expertise. On
the other hand, performing this action automatically can assist editors in this non-
trivial process. Note that the ODP structure classifies 4 Million URLs, while search
engines, such as Google, index more than 8 Billion documents. Thus, the scalability
of manual classification systems is extremely limited, and we would like to offer
automated means for scaling this process.

In order to evaluate the accuracy of the automatic classification of URLs into
topics, we adopt the following methodology: During the construction of the keyword-
annotated ODP structure, we excluded a set of URLs. Since these URLs belong to the
ODP structure, we precisely know their topic mapping. We then classify these URLs
using the WEKA [24] classification algorithms and observe the percentage of
accurately classified instances. As a measure of accuracy, we take the ratio of
correctly classified URLs versus all classifications:

URLsclassifiedof#
 URLsclassifiedcorrectly of#=Accuracy (3)

In our experiment, we limit our dataset to documents that belong to topics of

depth 2 in the ODP taxonomy. The dataset consisted of 3,940 documents, 194 topics
and 16,373 words. Each of the 3,940 instances contained the weights of the 16,373
keywords in the particular document, as well as the real topic to which the document
belongs. By classifying these pages using the Nearest Neighbor algorithm, with 5
neighbors, yielded an accuracy of 85.42% of correctly classified instances. This
shows that by utilizing the annotated ODP directory might be useful in automatically
classifying new web pages to the directory.

6 Conclusions and Future Work

 The focus of this paper is to produce a good-quality, large-scale database of

keywords for the ODP topic taxonomy. We have proposed KeyGen, a scalable,
flexible, and highly customizable system that can process a massive corpus of Web
documents. A keyword-enriched taxonomy has a wide array of interesting
applications, such as Focused Crawling [8], Pay-Per-Click Advertising [17] and
Automatic Classification of Web-Pages [4,12,23]. In the future we plan to make our
system and datasets open source. We additionally plan to apply the results of this

Web Search and Mining – Information Retrieval 407

paper in one or more of the aforementioned applications. One final direction is the
optimization of the components that comprise the KeyGen architecture.

References

[1] Google sets. http://labs.google.com/sets.
[2] Odp - the open directory project: Available online at: http://dmoz.org/.
[3] Releword, relekey, reletext: http://www.relevad.com/.
[4] G. Adami, P. Avesani, and D. Sona. Clustering documents into a web directory

for bootstrapping a supervised classification. In DKE, 54(3):301--325, 2005.
[5] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu. Intelligent Crawling on the World

Wide Web with Arbitrary Predicates. In WWW'01.
[6] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data.

Morgan Kaufmann Publishers, 2003.
[7] S. Chakrabarti, M. M. Joshi, K. Punera, and D. M. Pennock. The structure of

broad topics on the web. In WWW '02.
[8] S. Chakrabarti, B. M.V.D, and B. Dom. Focused Crawling: A New Approach to

Topic-Specific Web Resource Discovery. In WWW'99.
[9] P. Chirita, W. Nejdl, R. Paiu, and C. Kohlschuetter. Using ODP Metadata to

Personalize Search. In SIGIR'2005.
[10] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M.

Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by
image and video content: The qbic system. IEEE Computing Magazine, pages
23--32, 1995.

[11] M. A. Hearst and C. Karadi. Cat-a-Cone: an interactive interface for specifying
searches and viewing retrieval results using a large category hierarchy. SIGIR '97.

[12] D. Koller and M. Sahami. Hierarchically classifying documents using very few
words. In ICML '97.

[13] V. Krikos, S. Stamou, P. Kokosis, A. Ntoulas and D. Christodoulakis,
DirectoryRank: ordering pages in web directories. In WIDM'05.

[14] S. Middleton, D. D. Roure, and N. Shadbolt. Capturing Knowledge of User
Preferences: ontologies on recommender systems. In ICKC'01.

[15] S. Oyama, K. Tanaka, T. F., and M. L. Persona: A contextualized and
personalized Web search. In HICSS'02.

[16] M. F. Porter. Readings in Information Retrieval, chapter An algorithm for
suffix stripping. Morgan Kaufman, San Francisco, 1997.

[17] B. Ribeiro-Neto, M. Cristo, P. B. Golgher, and E. S. de Moura. Impedance
coupling in content-targeted advertising. In SIGIR '05.

[18] K. Stamatakis, V. Karkaletsis, G. Paliouras, J. Horlock, C. Grover, J. R. Curran,
and S. Dingare. Domain-specific Web site Identification: The CROSSMARC
Focused Web Crawler. In WDA 2003.

11th Panhellenic Conference in Informatics 408

[19] S. Stamou, V. Krikos, P. Kokosis, A. Ntoulas, and D. Christodoulakis, Web
Directory Construction using Lexical Chains. In NLDB'05.

[20] S. Stamou, A. Ntoulas, V. Krikos, P. Kokosis, D. Christodoulakis. Classifying
Web Data in Directory Structures. In APWEB'06.

[21] S. Sizov, M. Theobald, S. Siersdorfer, G. Weikum, J. Graupmann, M. Biwer, and
P. Zimmer. The BINGO! System for Information Portal Generation and Expert
Web Search. In CIDR'03.

[22] A. Wang. The shazam music recognition service. Commun. ACM, 49(8):44--
48, 2006.

[23] K. Wang, S. Zhou, and S. C. Liew. Building hierarchical classifiers using class
proximity. In VLDB'99.

[24] I. H. Witten and E. Frank. Data mining: practical machine learning tools and
techniques with Java implementations. Morgan Kaufmann Publishers Inc., 2000.

[25] W. Yih, J. Goodman, and V. Carvalho. Finding advertising keywords on web
pages. In WWW '06.

[26] D. Zeinalipour-Yazti and M. Dikaiakos. Design and Implementation of a
Distributed Crawler and Filtering Processor. In NGITS'2002.

