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Abstract 
 In this paper we present the ideas and algorithms developed around our KeyGen Web 
Taxonomy Annotation engine. KeyGen annotates the Open Directory Project, also known as 
Dmoz, with meaningful and previously unknown keywords by utilizing domain knowledge 
extracted from the WWW. We present two algorithms: i) The  PageParse Algorithm, which 
efficiently extracts keywords from Web Taxonomies using a combination of local and global 
scores, and ii) the  Support Algorithm, an I/O optimized algorithm for coalescing hierarchies of 
keywords. We then present the results: i) from constructing a richly annotated ODP Web 
taxonomy and ii) from evaluating the correctness of this structure by performing an automated 
classification of Web-pages. 

 
1. Introduction 

 Thematic taxonomies are tree structures that organize knowledge domains as 
hierarchies of  concepts (topics). The most specific concepts are placed at the leaves 
of these hierarchies while higher-level concepts are assigned to internal tree-nodes. 
Thematic taxonomies have been used in the establishment of  Web taxonomies ever 
since the advent of the WWW (e.g. Yahoo!). Web taxonomies comprise large Web-
page repositories whose documents are classified in the various categories (concepts) 
of selected thematic taxonomies. Web taxonomies are used to enhance the 
effectiveness of information retrieval on the Web representing an alternative approach 
to keyword-based searching or hypertext navigation [6]. Web taxonomies have also 
been used effectively to guide user navigation within large Web directories (portals), 
to drive focused crawlers, to support categorized searching, document classification 
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[20] and personalization [5,8,11]. The construction of Web taxonomies is currently 
done manually and involves significant effort and cost, although some approaches 
have also studied automated techniques to do so [19]. The URLs within a given 
directory might appear either alphabetically (e.g. DMOZ), by the Pagerank of the 
specific Webpage (e.g. Google Directory) or using a ranking that is deducted through 
other means [13]. 

The Open Directory Project (ODP), also known as Dmoz [2], is currently the 
largest, most comprehensive, human-edited Web Taxonomy. It is constructed and 
maintained by volunteer editors who insert manually new pages in their category of 
expertise and annotate these pages with semantic information. ODP classifies over 4 
million sites into 590,000 categories with the help of 75,151 editors (circa March 
2007). Typical ODP annotations provide short descriptions of the classified pages and 
associations with other Web-pages. These annotations are provided by the editors 
based on their personal rules of fairness and objectivity. While these annotations 
usually capture correctly the meaning of the respective pages, they fail to capture all 
the important keywords that characterize a given page. 

Manual classification of Web-pages into a predefined Web taxonomy structure 
has been efficient and practical over the years, as this has been demonstrated by the 
longevity of Yahoo and Dmoz, but annotating these taxonomies is a more challenging 
problem with no adequate solutions to this day. In particular, current annotations do 
not allow users to efficiently discriminate in real-time between a large number of 
concepts or pages that fall under the same category. An erroneous navigation decision 
can easily divert the user away from the desired resources creating in that way 
frustration and uncertainty about the effectiveness of the taxonomy. 

In this paper we propose an efficient solution to the problem of automatic 
annotation of large Web taxonomies. Our solution exploits the taxonomy editor's 
knowledge, which is embedded in the structure of the taxonomy itself and analyzes 
the page content. Recall that the classification of Web-pages in such taxonomies is 
traditionally carried out by the editors thus is accurate and relevant. Our ideas are 
developed in the context of the KeyGen system, a high performance system that 
utilizes the Web-pages referred through the Open Directory Project in order to enrich 
ODP with meaningful and previously unknown annotations. KeyGen combines 
powerful information retrieval and indexing techniques to extract keywords from a 
massive corpus of Web-pages classified in the ODP, and to group keywords into 
thematic, weighted keyword-sets. 

KeyGen initializes its operation by downloading the Open Directory Project 
(ODP) taxonomy RDF structure [2]. This provides the system with a flat list of m  
URLs. It then crawls all the respective URLs to a local repository and processes the 
acquired data in order to construct a lexicon that can be utilized to enrich the ODP 
taxonomy with new keywords. This process proceeds in the following phases: i) The  
Keyword Extraction Phase using PageParse and ii) the  Concept Hierarchy 
Annotation Phase using the  Support Algorithm. 

 



Web Search and Mining – Information Retrieval 399 

Our Contribution 
• We propose and evaluate  PageParse, which is an efficient and scalable technique 
for extracting keywords from pages that are referred through Web taxonomies, using 
a combination of local and global weighting scores.  
• We propose the  Support Algorithm, which efficiently merges keyword sets using a 
threshold that prunes away keywords with a low support. Our scheme is designed to 
optimize I/O performance, as this parameter is of major importance in large 
repositories of documents.  
• We provide experimental results which were obtain from a real ODP Web 
taxonomy snapshot, which consists of more than 4.5 million keywords. 

2   Related Work 
In this section we provide an overview of related research work. Although the 
problem of extracting semantically correlated keywords from a corpus of documents 
or the WWW, as well the problem of classifying Web-Pages into a pre-constructed 
taxonomy, are both well studied, exploiting large human-edited Web taxonomies in 
order to achieve both tasks has not been studied in any other context.  
 
Document Classification in Thematic Taxonomies 
The automatic annotation of Web Taxonomies studied in this paper is quite different 
from the typical supervised or unsupervised  classification problem in the context of 
Web Taxonomies [4,12,23]. In the classification problem, we start out from an empty 
taxonomy of predefined concepts T  and some unclassified document u , in order to 
assign  to the appropriate topic in u T . In our context, T  is already partially or fully 
constructed by editors, who manually insert URLs in the respective categories, thus 
there is no requirement to  bootstrap [4] the taxonomy. The challenge in our context 
is to automatically annotate the taxonomy T  with new keyword annotations, in such 
a manner that T  can be exploited by taxonomy users for better navigation, by 
focused crawlers to contextually prioritize their crawling sequence and by other 
applications that take a Web taxonomy as an input.  
 
Semantically-Correlated Keyword-Sets 
Constructing a keyword-enriched taxonomy creates in essence a hierarchy of 
semantically correlated keyword-sets. There are many tools for creating such 
semantically correlated keyword-sets [3,25], but none of these takes into account the 
hierarchical relation between these keywords. For instance, Google Sets [1], a 
research tool that allows users to automatically create sets of items from a few 
examples, expands a small number of representative candidates from a given concept 
given by the users. By providing terms, such as  bmw,vw,audi, the system lists all 
available car manufacturers. However this service only considers a flat structure of 
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keywords rather than a hierarchy. This  Query By Example paradigm has been 
extensively used in content-based image retrieval (e.g. the QBIC [10] project at IBM 
Almaden), content-based audio retrieval [22] as well as SQL databases (Microsoft 
Access) and is appropriate when a query-set is available.  
 
Web Taxonomies 
The Open Directory Project and Web Taxonomies in general, have been utilized by a 
number of other projects, because they organize the WWW into a hierarchy of high-
quality recommendations. In particular, Web taxonomies are used to enhance the 
effectiveness of information retrieval on the Web, representing an alternative 
approach to keyword-based searching or hypertext navigation [6]. Web taxonomies 
have also been used effectively to guide user navigation within large Web directories 
(portals), to drive focused crawlers, and to support categorized searching and 
document classification [4,5,8,11,21,18]. The ODP taxonomy has been utilized in the 
context of personalized Web search [14,9,15] where it refines query answers that are 
returned through general purpose search engines. The ODP structure has also been 
utilized by Chakrabarti et al. in [7], in order to study the topic properties of the Web. 
 
3   PageParse: The Keyword Extraction Algorithm 

   
In this section we describe the intuition behind the PageParse keyword extraction 
algorithm, the module that extracts keywords from pages referred through the ODP 
taxonomy. Note that the ODP directory has already been downloaded to local storage 
by our Web Crawler at this point. 

 
3.1    Pre-Processing Phase 
 
Let W =  denote our collection of m  Web pages. In the first phase of 
PageParse, we extract all the keywords from the collection W  and create a set of 

},...,,{ 21 mwww
r  

keywords . Recall that Web-pages in our Information Repository 
are documents encoded in HTML. HTML represents a primitive structure of each 
document through the use of tags that specify document features such as the title, the 
main body, various headings, characteristic keywords, and anchors. Intuitively, terms 
that appear in the title, header, keyword meta-tags or have special typesetting 
demarcation (bold, emphasis, etc.) can be considered to be semantically more 
important than plain document text for the characterization of the document's 
contents. For this reason, KeyGen exploits the Web-page structure by assigning 
different importance weights to terms according to the HTML tag that they are 
assigned (see Table 1). 

},...,{= 21 rkkkK
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Table 1:  HTML Tag Classes: KeyGen calculates the frequency of appearance of a 
term in each of the seven classes of HTML and produces a  Term Frequency Vector 
(TFV)  

 Class                      HTML Tags 
1 

2 

3 

4 

5 

6 

7 

Title                 

 Meta Data       

 Headings 1,2  

 Headings 3-6  

Anchor            

Emphasized     

Plain Text        

TITLE   

 META   

 2,1 HH  

 61 HH −   

 A   

ULOLDLEMSTRONGIB   
 Everything else 

 
 

In order to avoid commonly appearing words, our system utilizes a stop-word list 
of keywords, eliminating in that way frequently-used words, such as ``and,'' ``yes,'' 
``me,'' ``do,'' ``take'', which do not provide any semantic benefit to our lexicon. We 
furthermore apply the widely used Porter stemming algorithm [16], in order to reduce 
common morphological and inflectional endings from words in our list of keywords 
K . 

 
3.2   Weighting Scheme 
 
A document (or downloaded URL) in our setting, is represented as a vector in a r -
dimensional Euclidean space, where r  is the size of all the unique keywords in the 
repository. The coordinate (weight) of each term in each document in this space is 
defined as the product of three parameters depicted in Equation (1): 

 
  jiijij NGLw ××=                (1) 
 

1. Local Weight ( ): The Term Frequency Element  of word i  in 
document 

ijL ijL
j , which denotes the significance of a term in a particular 

document;  
2. Global Weight ( ): The Collection Frequency Element of word , 

which denotes the importance of the term in the whole Information 
Repository, and  

iG i
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3. Normalization Factor ( ): The Length Normalization Element of 
document 

jN
j , which is used to avoid the bias of longer documents over 

shorter ones.  
 
Many different techniques have been proposed for calculating each of these 

factors. The modularity of KeyGen enables the easy integration of different methods. 
Currently, KeyGen implements the  Term Frequency (TF) as a local weight, the  
Inverted Document Frequency (IDF) as a global weight and  Cosine (COSN) as a 
normalization length. Therefore equation (1) will be transformed to equation (2). 

 
  jiijij COSNIDFTFw ××=              (2) 
 
Term Frequency ( ) is the frequency of occurrence of term i in document ijTF

j . Inverse Document Frequency ( ) suggests that a good term exhibits low 
collection frequency. Cosine Normalization ( ) is a popular normalization 
factor; it normalizes the weighted document vector so that the magnitude of the 
weights is one. 

iIDF

jCOSN

 
4   The Support Algorithm: Merging the Keywords 

 
In this section we present the  Support Algorithm, which recursively coalesces the 

keyword-sets identified during the PageParse phase into a keyword-enriched concept 
hierarchy . Since we have to cope with a very large collection of 
concepts and Web-pages stored on secondary storage, we seek to optimize I/O access. 
In the experimental section, we will show that our collection consists of over 
1,000,000 Web-pages classified in more than 78,000 concepts. Our algorithm has a 
linear time complexity of 

},...,,{= 21 mtttT

)( mnO + , where  is the number of Web-pages 
 and  is the number of concepts . 

n
},...,,{= 21 nwwwW m },...,,{= 21 mcccC

 
4.1   Support Algorithm Description 

 
The Support Algorithm is a recursive algorithm that is highly optimized for I/O 

efficiency. In particular, our algorithm merges the keyword-sets, available for each 
Web-page, using a single linear scan over the respective local repository. 

Our algorithm performs a Depth-First-Traversal of the tree taxonomy T . At 
each leaf level, it executes the PageParse algorithm on all the Web-pages referenced 
from within the given level (See Algorithm 1, line 3-9). This produces a set of 
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keywords per Web-page ( ). The algorithm then hashes all the keywords 
located in , into an in-memory hash table ( ) in order to enable 
more efficient joins between keyword-sets in the subsequent steps. Each bucket of 

 maintains both the keyword and the weight of each respective keyword. 
The weight will be utilized in order to remove keywords that have a weight 
( ) below a given threshold. 

keyset
keyset pagehash

pagehash

support
 

 
 

While obtaining the appropriate keywords from a given Web-page, is 
merged with the rest of the keywords that are located at the current level of the 
taxonomy ( levelhash ). In order to achieve this task, we have to merge two 

pagehash
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hashtables of size  and  respectively. This is a fairly cheap 
task that can be achieved in linear time , since each insertion in 

 is performed in . If we chose to implement this procedure without 
hashtables, we would need  as each of the 

 insertions would require . In general, given 

|| levelhash || pagehash
|)(| pagehashO

levelhash (1)O
|)|*|(| levelhashpagehashO

|| pagehash |)(| levelhashO K  keysets, 

each with an average size of l , would require  time in the absence of the 
hashtables, while our approach requires only  time for the hashing and 

 time for the merging (i.e. again ). Finally note that both 
 and  are already in memory, thus this function is extremely 

fast. 

)( KlO
)*( KlO

)*( KlO )*( KlO
pagehash levelhash

After the  tables are created at the leaf levels of the tree levelhash T , we 
proceed with sorting of these hashtables in order to identify the keywords above a 
certain threshold. This is illustrated in lines 11 to 25 of Algorithm 1. The threshold τ , 
is a user-defined parameter which identifies the minimum weight a keyword should 
have in order to be retained for the given level of the taxonomy. 

 
5    Experimental Evaluation 

   
In this section we present our datasets, evaluation parameters and evaluation results. 
Our system configuration includes a non-exclusive Solaris machine with 4 CPUs and 
8GB RAM. 

 
5.1   Description of Datasets 
 
Our dataset consists of the first 6 levels of the ODP Web taxonomy along with their 
respective Web-pages. In order to obtain this dataset we started out by downloading 
the ODP directory dump in RDF-XML 1. We then performed a breadth first traversal 
for 6 levels of the ODP structure and generated a seed list of 1,153,086 URLs (coined 
the  ODP seed list). The seed list was provided as an input to the open source 
WebRace crawler [26], which downloaded the respective pages into our local 
repository. Since many of the given URLs were either not available at the time of our 
crawl, or had been completely eliminated from the respective Web servers, we were 
only able to download the 91% of the complete list (i.e. 1,046,021 URLs). The 
downloaded Web-pages required about 4GB of hard drive in a compressed form. 
Since our intention was to build a multilingual corpus of semantically correlated 
keywords for each given topic, we did not limit our crawl to the content of a specific 
                                                      
1http://rdf.dmoz.org/ 
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language but rather utilized all of them. We note that 257,978 pages were listed under 
the top-level concept  Top/World, which are pages classified as non-English. 

5.2   Generating the Lexicon 
We processed the first 6 levels of the ODP Web taxonomy, which were previously 
stored to local storage, using the PageParse algorithm. This resulted in a collection of 
4,634,247 unique (and stemmed) keywords. These keywords represent 78,312 unique 
topics. By excluding the Top/World branch of the ODP structure, which includes 
mainly non-English content, we derived a sub-lexicon of 3,468,071 keywords and 
65,165 topics. This shows that our system is able to uncover an extremely large 
number of keywords and topics. 

By analyzing our acquired data we found that each topic features at least one 
keyword, at most 300K keywords and on average 1,689 keywords. Although each 
topic usually contains several keywords, many of these keywords have a low weight. 
These keywords will be excluded using the user defined pruning threshold τ  and will 
not be utilized to characterize a given topic. In an attempt to limit the words to 
English ones, we removed the Web-pages that belonged to topics under Top/World. 
The majority of these pages are multi-lingual. In the graph in Figure 1 it is illustrated 
how the number increases rapidly when pages that include non-English pages are 
processed, as opposed to the case where non-English pages are removed. 

 

 
 
Fig. 1.  Increase of number of keywords as the number of Web-pages increases 
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5.3.   Evaluating Precision through Web Page Classification 
  

In the second experimental series, we perform a classification of Web-Pages using the 
keyword-annotated ODP structure constructed during the previous process similarly 
to [20]. The intuition behind these experiments is that the improved keyword-
annotated topic keywords should be able to more accurately classify a given URL to 
some topic. Note that the classification of URLs into topics, in a real setting, is a 
manual process which is conducted by editors based on their domain expertise. On 
the other hand, performing this action automatically can assist editors in this non-
trivial process. Note that the ODP structure classifies 4 Million URLs, while search 
engines, such as Google, index more than 8 Billion documents. Thus, the scalability 
of manual classification systems is extremely limited, and we would like to offer 
automated means for scaling this process. 

In order to evaluate the accuracy of the automatic classification of URLs into 
topics, we adopt the following methodology: During the construction of the keyword-
annotated ODP structure, we excluded a set of URLs. Since these URLs belong to the 
ODP structure, we precisely know their topic mapping. We then classify these URLs 
using the WEKA [24] classification algorithms and observe the percentage of 
accurately classified instances. As a measure of accuracy, we take the ratio of 
correctly classified URLs versus all classifications: 

URLsclassifiedof#
 URLsclassifiedcorrectly  of#=Accuracy         (3) 

 
In our experiment, we limit our dataset to documents that belong to topics of 

depth 2 in the ODP taxonomy. The dataset consisted of 3,940 documents, 194 topics 
and 16,373 words. Each of the 3,940 instances contained the weights of the 16,373 
keywords in the particular document, as well as the real topic to which the document 
belongs. By classifying these pages using the Nearest Neighbor algorithm, with 5 
neighbors, yielded an accuracy of 85.42% of correctly classified instances. This 
shows that by utilizing the annotated ODP directory might be useful in automatically 
classifying new web pages to the directory. 

 
6   Conclusions and Future Work 

 
  The focus of this paper is to produce a good-quality, large-scale database of 

keywords for the ODP topic taxonomy. We have proposed KeyGen, a scalable, 
flexible, and highly customizable system that can process a massive corpus of Web 
documents. A keyword-enriched taxonomy has a wide array of interesting 
applications, such as Focused Crawling [8], Pay-Per-Click Advertising [17] and 
Automatic Classification of Web-Pages [4,12,23]. In the future we plan to make our 
system and datasets open source. We additionally plan to apply the results of this 
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paper in one or more of the aforementioned applications. One final direction is the 
optimization of the components that comprise the KeyGen architecture. 
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