
 

Estimating Collection Size in Distributed Search  
 

 

Jingfang Xu   Sheng Wu  Xing Li 

xjf02@mails.tsinghua.edu.cn wu-s05@mails.tsinghua.edu.cn xing@cernet.edu.cn 
Department of Electronic Engineering, Tsinghua Unviversity, Beijing, 100084, China  
 

Abstract 
Distributed search is an effective way to search information over thousands of information 
collections available on the web. As an important feature in distributed search, collection size 
plays a vital role in resource representation and selection. This paper proposes two novel 
algorithms to estimate collection size in uncooperative environments.  Sample high frequent 
resample (SHFRS) algorithm firstly samples collections with random queries and then 
resamples with highest frequent queries in sample sets. Considering different capture 
probabilities across documents, heterogeneous capture (HC) algorithm estimates collection 
size with conditional maximum likelihood. Both algorithms are evaluated on real web data. 
Experimental results show that our algorithms outperform significantly both sample-resample 
and capture-recapture algorithms. 

 
Keywords: Multiple capture-recapture, Sample-resample, Collection size estimation  

1. Introduction 
In the World-Wide Web today, there is a wealth of information “hidden” in the 
information collections such as digital libraries and web databases which are called 
deep web. Unlike information in the surface web, rather than crawled by general 
search engines, e.g. Google, information in these collections can only be accessed 
through collections’ search interfaces. One way to integrate information in these 
collections automatically is through distributed search engines, which search multiple 
collections in distributed environments. Given a query, a distributed search engine 
ranks the underlying collections and selects some of them to forward the query 
(resource selection) based on their content summaries (resource representation), and 
then merges the results returned from the selected collections (results merging).  

As an important feature in resource representation, collection size, the number of do-
cuments in a collection, is considered in many resource selection algorithms [Si and 
Callan (2003)][Liu et al. (2002)]. In cooperative environments, collections follow 
some special protocols, e.g. STARTS [Gravano et al. (1997)], providing their content 
sum-maries initiatively, including their sizes. However, in practice, collections are 

 



11th Panhellenic Conference in Informatics 410 

control-led by different organizations, so acquiring resource representation with 
protocols will fail when collection controllers do not cooperate or misrepresent their 
contents. Consequently, it is important for distributed search engine to estimate the 
content summaries of underlying collections in uncooperative environments. Some 
collection size estimation algorithms in uncooperative environments have been 
proposed, such as sample-resample [Si and Callan (2003)] and capture-recapture 
[Shokouhi et al (2006)][Liu et al. (2002)], but their estimation accuracy need to be 
improved.  

This paper presents two novel collection size estimation algorithms in uncooperative 
environments: sample high frequent resample (SHFRS) and heterogeneous capture 
(HC). SHFRS firstly collects sample documents by running some random queries in a 
collection, and then resamples with high-frequent queries in the sample set. On the 
other hand, allowing different capture probabilities, HC estimates collection size with 
conditional maximum likelihood. In addition, the capture probability is formulated 
with linear logistic regression. Experimental results show that our algorithms outper-
form previous algorithms, which indicates that our algorithms are more suitable to 
estimate collection size.  

The rest of the paper is organized as follows. First previous work is briefly reviewed 
in section 2. Then we present SHFRS algorithm in section 3, and HC algorithm in 
section 4. Section 5 describes the experiments and results. Finally we conclude with 
future work in section 6.  

2. Previous Work 

In cooperative environments, it is specified in some protocols, e.g. STARTS, that 
collection size is one important element for describing collections, which need to be 
exported by collections initiatively. Correspondingly, in uncooperative environments, 
sample-resample and capture-recapture are proposed for estimating collection size.  

Sample-resample, proposed by Callan et al., consists of two steps: sample and 
resample. First, the algorithm collects a sample set by running some random queries 
in the collection’s search interface. Second, some random terms in the sample set are 
sent to the search interface to investigate their document frequencies in the complete 
collection. Assuming that the probability of a random term occurring in the sample 
set equals to that in complete collection, the collection size can be estimated.  

Capture-recapture is firstly proposed by Liu et al., and then refined by Shokouhi et 
al. to multiple capture-recapture. In multiple capture-recapture, the returned 
documents of each query are viewed as a sample set, and T sample sets with the same 
size k are needed. Assuming random capture, the expected number of duplicate 
documents in two random samples is k2/N, where N is the collection size. Using T 
samples, the total number of pairwise duplicate documents D can be formulated as 

 



Software Engineering 411 

T(T+1)k2/2N. Hence, the collection size is estimated as T(T+1)k2/2D. The basic 
assumption in capture-recapture methods is random capture, which means that 
capture probabilities across documents in the collection are the same. Unfortunately, 
in practice, capture probabi-lities are usually biased towards long documents or 
documents with high static ranks. Moreover, capture probabilities are also related 
with ranking functions used in the co-llections [Shokouhi et al (2006)][Bar-Yossef 
and Gurevich (2006)]. To eliminate the influence of the bias, Border et al. [Border et 
al.(2006)] and Bar-Yossef et al. [Bar-Yossef and Gurevich (2007)] introduce 
importance sampling, which is to estimate collection size by uniform distribution 
using observations from a biased distribution. 

0

5

10

15

20

25

30

35

40

Ter m

Ra
ti

o 
of

Pr
ob

il
it

ie
s

 
Figure 1. Ratio of terms’ occurring probabilities in sample set and in collection 

3. Sample High Frequent Resample Algorithm 
In sample-resample method, the probability Psample(t) of term t occurring in the sample 
set and Pcollection(t) of term t occurring in the collection are formulated as Equation 1.  

( ) ( )( ) ( )sample
sample collection

sample

df t df tP t P t
N N

= =                           (1) 

, where dfsample(t) and df(t) are document frequencies of term t in the sample set and in 
the complete collection, Nsample and N are referred to as size of the sample set and the  
collection. It is assumed that the two probabilities are almost the same.  However, we 
did some experiments to compare the two probabilities across terms and found that is 
not exact. We built a site search for a real web site, and collected a sample set with 
sample-resample method. Figure 1 shows the ratios of term occurrence probabilities 
in two sets. The horizontal axis represents terms, sorted according to their document 
frequencies in the collection, while the vertical axis shows Psample(t)/Pcollection(t). As 
illustrated in the figure, for most of the terms, the ratio values are far different from 1, 
which means the two probabilities are vastly different. However, on the most left of 
the figure, referred to as the highest frequent words, the ratio values are close to 1. In 
other words, the approximate occurrence probabilities assumption in sample-resample 
method is only correct for highest frequent terms. Therefore, most of the words are 
unsuitable for collection size estimation except highest frequent terms. Maybe it is 

 



11th Panhellenic Conference in Informatics 412 

because that highest frequent terms are probably stop-words or kernel words of 
collection’s topic, which are used in most of the documents in the collection. 

According to this observation, SHFRS is proposed. Different from sample-resample 
algorithm, which selects random terms to resample, only highest frequent terms are 
used in SHFRS, which is described as follows in detail.  

1. Run some random queries to search the collection, and collect top k documents 
returned for each query to build a sample set with predefined size Nsample. 

2. Calculate document frequencies of terms occurring in the sample set, and use n 
highest terms to resample. The numbers of matches reported by the search interface 
are referred to as their document frequencies in the collection.  

3. With document frequencies of terms resampled, the collection size is estimated 
with Equation 1, 2.  

1

( )1ˆ( ) ( )
( )

n i sample
sample collection

i sample i

df t N
P t P t then N

n df t=

∗
= = ∑                  (2) 

4. Heterogeneous Capture Algorithm 
Both sample-resample and SHFRS need the numbers of matches reported by search 
interfaces. So they will fail when search interfaces do not report the match numbers or 
lie. Though the capture-recapture mechanisms do not require the number of matches, 
their assumption about random capture is questionable as mentioned in Section 2.  

Different from the effort of eliminating capture bias in Border et al. and Bar-Yossef et 
al.’s work, considering different capture probabilities of documents, HC algorithm is 
inspired by a kind of capture-recapture methods, which allows heterogeneous capture 
probabilities, used in ecology first [Alho (1990)][Huggins (1989)]. In HC, the capture 
probability of a document is related with its characteristics, such as length and static 
rank, as well as the capture environments, such as sample query. Using covariates xij, 
the capture probability is estimated with linear logistic model, shown as Equation 3. 

0 1 2 3

0 1 2 3

exp( ' ) exp( )
1 exp( ' ) 1 exp( )

ij i i ij
ij

ij i i ij

x len rank
P

tf
x len rank tf

β β β β β
β β β β β

+ ⋅ + ⋅ + ⋅
= =

+ + + ⋅ + ⋅ + ⋅
                  (3) 

, where Pij is the capture probability that document i is captured on the jth capture, 
leni is the length of document i, ranki is the static rank of document i, tfij is the term 
frequency of the jth query in document i, and β0, β1, β2, β3 are linear coefficient. 

Supposing a collection with N documents, we sample it k times with k random 
queries. On each sample, we capture some documents and record them. Then the full 
likelihood is formulated as follows.  

 



Software Engineering 413 

1
1 1 (1 )ij ijN k

i j ij ijL K P Pδ δ−
= == ∏ ∏ −                               (4) 

, where K depends on none parameters other than N, δij=1 if document i is captured 
on the jth capture and δij=0 otherwise. Unfortunately, we can not collect the values of 
covariates, such as leni and ranki, for documents never captured.  Suppose a total of n 
documents, labeled i=1, 2, …, n, are captured. Let Ci be the event that document i is 
captured at least once and Cij be the event that document i is captured on the jth 
capture. Given Ci, the conditional capture probability rij of document i on the jth cap-
ture is formulated as Equation 5. According to Huggins-Alho method [Alho (1990)] 
[Huggins (1989)], we infer the parameters with conditional maximum likelihood, 
involving only the documents captured at least once, shown as Equation 6.  Then we 
estimate the collection size with Horvitz-Thompson estimator with Equation 7. 

,
1 (1 )

, o t h e r

i j
i jk

l j i ji j

i j

P
i f z

Pr
P

=

⎧
0

w i s e

=⎪
− ∏ −= ⎨

⎪
⎩

                           (5) 

, where zij is 1 if document i has been captured before the jth capture and 0 otherwise.    
1

1 1 (1 )ij ijn k
i j ij ijL r rδ δ−
= == ∏ ∏ −                                  (6) 

1
1

1ˆ , 1 (1
n k

ji
i i

N P
P =

=
= = − −∑ ∏ )ijP                                          (7) 

, where Pi is the probability that document i being captured at least once.  

5. Experimental Results  

5.1 Data 

The algorithms described in this paper were evaluated with real web data. We 
crawled 50 Chinese web sites and built a site search engine for each of them. These 
site search engines are viewed as distributed collections, whose size we need to 
estimate.  In addition, the ranking function used in the site search engine is static 
score, calculated by PageRank algorithm, combined with dynamic score, calculated 
by Okapi BM25 formula. Their actual sizes vary from 793 to 342,159 documents, and 
the average size of them is 29,440. 

 

 

 



11th Panhellenic Conference in Informatics 414 

5.2 Metric 

Absolute error ratio (AER)[ Si and Callan (2003)] is adopted to measure the accuracy 
of collection size estimation. Let N be the actual size of a search engine and  be the 
estimated value, and then AER is defined as follows.  

N̂

  
ˆN N

AER
N

−
=                                                      (8) 

5.3 Implementation 

Four kinds of collection size estimation algorithms were evaluated in our 
experiments, sample-resample, SHFRS, multiple capture-recapture, and HC. In the 
sample-resample and SHFRS algorithms, we selected the top 10 returned documents 
for every query to build a sample set, until its size reached the predefined size. While 
the sample-resample method selected 10 random terms in sample set to resample, our 
SHFRS algorithm chose 10 highest frequent terms. If the collection does not support 
the retrieval of some queries selected in SHFRS, e.g. stop-words, we just skipped 
them and selected other high frequent terms. 

In multiple capture-recapture and HC methods, we collected 100 documents on each 
capture with random terms occurring in the sample set. In addition, as the covariates 
in HC, the document length and term frequency of query can be acquired by parsing 
the content of the document, but the static rank of the document, e.g. PageRank score, 
is hard to obtain directly without the link graph of all the documents in the collection. 
So we used the average position of the document in the returned lists across all the 
queries to approximate its static rank. It is based on the assumption that the static 
ranks of the documents which usually occur in the front of the returned lists are 
probably higher than those of the documents occurring in the end of the lists.  

5.4 Results and Discussions 

For sample-resample and SHFRS algorithms, we evaluate their performances with 
sample sets of different sizes, from 300 documents to 2000 documents. As shown in 
Figure 2, across all the sample sets, the AER values of SHFRS vary from 31.8% to 
36.8%, and the minimum is achieved with the sample set containing 1000 documents. 
However, the performance of sample-resample is poor, ranging from 49.4% to 
413.9%, which is similar to the results shown by Shokouhi et al.[Shokouhi et al 
(2006)]. The results indicate that sample-resample is unsuitable for size estimation.  

 



Software Engineering 415 

 
Figure 2. Performance of Sample-Resample and SHFRS  

 
Figure 3. Performance of Multiple Capture-Recapture and HC 

On the other hand, the performance of HC and multiple capture-recapture algorithms 
with different number of samples is shown in Figure 3. While the AER values of 
multiple capture-recapture fluctuate around 41% with different number sample sets, 
the performance of HC varies from 37.4% to 27.3%, decreasing with the increase of 
the number of sample sets. To sum up, the performance of multiple capture-recapture 
is robust but is poorer than that of HC algorithm.  

The best performance of these algorithms is shown in Table 1. HC is the best among 
all the algorithms, 14.5% better than SHFRS, and 33.9% better than multiple capture-
recapture, due to considering the different capture probabilities across documents. 
Depending on match number reported by the collection, SHFRS has a little advantage 
over multiple capture-recapture. So SHFRS is more accurate than multiple capture-
recapture when the collection reports the number of matches correctly. 

Table 1. Best performance of all algorithms 

Algorithm Sample-Resample SHFRS Multiple Capture-Recapture HC 

AER 49.4% 31.8% 41.3% 27.3% 

 

 



11th Panhellenic Conference in Informatics 416 

6. Conclusions and Future Work  
In this paper, we propose two novel collection size estimation algorithms: SHFRS and 
HC. After collecting a sample set with some random queries, SHFRS resamples a 
collection with some highest frequent terms in the sample set. Taking advantage of 
highest frequent terms, our SHFRS algorithm outperforms the well-known sample-
resample algorithm. Considering the different capture probabilities of documents, HC 
algorithm estimates the collection size with conditional maximum likelihood based on 
the documents that have been captured. To the best of our knowledge, it is the first 
time that heterogeneous capture probabilities are allowed in the collection size 
estimation algorithms. All the algorithms are evaluated on the real web data. 
Experimental results show that our algorithms outperform significantly both tsample-
resample and multiple capture-recapture algorithms. For the future work, we plan to 
use more features in HC algorithm to estimate the capture probability, and the effects 
of different features will also be explored.  

References 
A. Broder, M. Fontoura, V. Josifovski, R. Kumar, R. Motwani, S. Nabar, R. Panigrahy, 

A. Tomkins, and Y. Xu. (2006), Estimating corpus size via queries. Proc. 15th 
CIKM, 2006. 

Alho, J. (1990), Logistic regression in capture-recapture models, Biometrics, vol. 46, 
pp.623-635 

Bar-Yossef, Z., Gurevich, M. (2006), Random sampling from a search engine’s index, In 
Proceedings of WWW’06, pp. 367-376.  

Bar-Yossef, Z., Gurevich, M. (2007), Efficient Search Engine Measurements, In 
Proceedings of WWW’07.  

Callan, J., Connell, M. (2001), Query-based sampling of text databases, ACM 
Transactions on Information Systems, vol. 19, pp. 97-130. 

Gravano, L., Chang, C.-C.K., Garcia-Molina, H., Paepake, A. (1997), STARTS: Stanford 
proposal for internet meta-searching, In Proceedings of SIGMOD’97, pp. 207-218. 

Huggins, R. (1989), On the statistical analysis of capture experiments, Biometrika, vol. 
76, pp. 133-140. 

Liu, K., Yu, C., Meng, W. (2002), Discovering the representative of a search engine, In 
Proceedings of CIKM’02, pp. 652-654. 

Si, L., Jin, R., Callan, J., Ogilvie, P. (2002), A language modelling framework for 
resource selection and results merging, In Proceedings of CIKM’02, pp. 391-397. 

Si, L., Callan, J. (2003), Relevant document distribution estimation method for resource 
selection, In Proceedings of SIGIR’03, pp. 298-305. 

Shokouhi, M., Zobel, J., Scholer, Falk., Tahaghoghi, S. (2006), Capturing collection size 
for distributed non-cooperative retrieval, In Proceedings of SIGIR’06, pp. 316-323. 

 

 


