

QuadSearch: A Novel Metasearch Engine

 Leonidas Akritidis1 George Voutsakelis2
 Dimitrios Katsaros1,2 Panayiotis Bozanis2

1Dept. of Informatics
Aristotle University
Thessaloniki, Greeee

2Dept. of Computer & Communication Engineering
University of Thessaly Volos, Greece

lakritid@mywork.gr, {gevoutsa, dkatsar, pbozanis}@inf.uth.gr

Abstract
Metasearch engines are increasingly becoming a very useful tool for Web information
retrieval. In this paper we describe QuadSearch, an experimental metasearch engine that
provides simultaneous access in four major conventional, crawler-based search engines. The
heart of the new metasearch engine is based on two novel rank-based aggregation algorithms.
The QuadSearch engine aims to combine speed, reliable rank aggregation method, “spam”
free results, and detailed and enriched information. A publicly accessible interface for the new
engine can be found at http://cheetah.csd.auth.gr/~lakritid/.

Keywords: Rank aggregation, top-k lists, Borda count, spam, bombing, metasearching, Web
ranking, search engines, information retrieval.

1. Introduction
Nowadays, the most popular systems for digging for information in the Web are the
search engines, either general purpose search engines, like Google (Page at al., 1999),
or special purpose engines, like Medical World Search (http://www.mwsearch.com/).
Although search engines are extremely popular among Web users, they can not
achieve large coverage and high scalability.

The tool which rapidly gains acceptance by the users are the metasearch engines
(Meng et al., 2002). Metasearch engines run simultaneously a user query across
multiple component search engines, take the returned results and then aggregate
them. The advantages of the metasearch engines are the following: a) they increase
the search coverage of the Web, b) they solve the scalability problem of Web

11th Panhellenic Conference in Informatics 454

searching, c) they facilitate the exploitation of multiple search engines, and d) they
improve the retrieval effectiveness.

The heart of a metasearch engine is the rank aggregation algorithm, which defines the
final ranked result list from the individual results. Further process can be done in
order to filter the results and allow the final result list of the metasearch engine to be
relieved from unwanted, devious and undeservedly highly ranked Web pages. In a
world which is frequently motivated by commercial interests, the user does not have a
clear form of protection against the interests of individual search engines. Therefore,
the metasearch engine should provide results to the user that are as free as they can be
from paid listings and paid links.

1.1 Motivation and contributions

During the last years, the problem of paid listing within the retrieved results of search
or metasearch engines has received a lot of attention. Generally, search engines resent
less paid listings than metasearch engines. In addition, paid links at the major search
engines are, in some way, separated from the main result list. In contrast, the
metasearch engines do not have such delineation, making unclear which links are
paid. Related to this is the problem of “spam” by authors of Web pages who attempt
to achieve undeservedly high rank for their Web pages by exploiting defects of the
ranking functions of search engines.

Secondly, there is no rank aggregation algorithm that bears a wide variety of
parameters like the number of the search engines where a particular item appeared,
the total number of exploited search engines or the size of the top-k list returned from
each search engine. What we expect from a metasearch engine is to:

• consider as many parameters of these as possible,
• have anti-spam and anti-paid list properties,
• support personalization properties,
• refrain from using any training data in order to perform the rank aggregation,

because, there is usually no evidence about the underlying data properties and
their distributions, and

• do not count upon the scores of the individual search engine rankings in order
to perform the rank aggregation, because, most of the search engines do not
provide such scores.

Motivated from these requirements, we developed the QuadSearch metasearch engine
(named after the fact that it currently capitalizes on four most popular search
engines), which satisfies the above criteria. Firstly, it has two fast rank aggregation
algorithms; a default algorithm and an improved version of it, enhanced with more

Web Search and Mining – Information Retrieval 455

antispam properties. Secondly, it allows the user to exploit whichever version of the
rank algorithm he desires, and adjust a lot of the interface and the appearance
parameters. We have implemented an experimental version of this metasearch engine,
which although can be accessed at http://cheetah.csd.auth.gr/~lakritid/.

The rest of this article is organized as follows: in Section 2, we briefly review the
relevant work on metasearch engines; in Section 3, which presents the main article
ideas, we describe the new rank aggregation methods and in Section 4, we present the
implementation issues behind the developed metasearch engine. Finally, in Section 5,
we highlight the main features of the new metasearch engine and in Section 6, we
conclude the paper.

 2. Existing metasearch engines

The first metasearch engines were established back in 1996. The interested reader can
find out the most popular metasearch engines of that period at (Baeza-Yates &
Ribeiro-Neto, 1999, page 388). However, many problems occurred such as a lot of
paid links inside organic results, the refusal of Google to cooperate with them and
some fraud problems of pay-per-click search engines that led the metasearch engines
to decline.

Now metasearch engines are coming back and a significant part of work is conducted
for them (Fagin et al., 2006; Fagin et al., 2003). Researchers and developers work
hard to prove that the results returned are defined by search algorithms and not by
advertisers. They use classification and personalization techniques that conventional
search engines do not have. In the sequel, we will mention a few metasearch engines1
(Gulli & Signorini, 2005; Wu et al., 2001). A complete list of metasearch engines can
be found at www.searchenginewatch.com/showPage?html.page=2156241.

Vivisimo (http://vivisimo.com/) and Jux2 are clustering engines, which automatically
organize the retrieved pages on-the-fly into categories (groups). IxQuick ranks the
results based on the top-10 rankings a site receives from various search engines,
iBoogie creates a list of categories related to search terms and InfoGrid provides
direct links to major search engines and topical Web sites in different categories.
SearchOnline offers a highly customizable interface, while Kartoo presents the results
within a map that shows the most important sites and the linkage relationship between
the results.

1 The best and most popular meta search engines,
www.searchenginewatch.com/showPage?html.page=2160791

11th Panhellenic Conference in Informatics 456

 3. The heart of the proposed novel result merging

The ideal scenario for result merging is when each search engine gives a complete
result list of all the alternative items, related to the keyword terms of a given query, in
the universe of alternatives. This can not be done and it is far too unrealistic for two
main reasons: (i) search engines' coverage is different, and (ii) search engines limit
access only to a portion of the complete result list. The worst scenario is when the
result lists of component search engines don't have overlapping elements between
them. In this case there is nothing that a rank aggregation algorithm can do.

Several rank aggregation methods have been used by metasearch engines (Lu et al.,
2005; Meng et al., 2002, Renda & Straccia, 2003). In the 1990s most of the
metasearch engines used score-based ranking methods to produce their results, i.e.,
they utilized the scores (weights) returned by the component search engines in order
to fuse the component rankings. Moreover, many metasearch techniques applied
normalization on these ranking scores in order to make them comparable.

Although score-based methods appear to be more effective for rank fusion, the
absence of scores (or denial to reveal) from many search engines' rankings turned
these methods problematic (Renda & Straccia, 2003); thus the rank-based fusion
became the mainstream in present metasearch engines (Renda & Straccia, 2003). For
instance, the Borda Count (Dwork et al., 2001; Renda & Straccia, 2003), which is a
voting-based fusion method, is very popular among metasearch engines. Each result
is a candidate and each search engine is the voter. Each candidate receives points
from each voter according to its rank in the voter's list. For example, the top ranked
candidate will receive n points, where n is the number of candidates. If a candidate is
not in the top-k list of some voter then it will receive a portion of the remaining points
of the voter (each voter has a fixed number of points available for distribution) or a
constant number (0 or 1), depending on the variation of the method. The Borda Count
method can be found in different versions, like the weighted Borda Count method
(Souldatos et al., 2005), where each voter also takes a score and therefore his opinion
for a candidate is not treated equally against other voters. Improved methods for
ranking comparison and merging in the case of ties can be found at (Fagin et al.,
2004, Fagin et al., 2006).

3.1 The ke method

In the sequel, we will present the rank fusion method of QuadSearch using only four
component search engines (Google, Yahoo!, Live Search, Ask Jeeves/Teoma) since,
for the present, our QuadSearch engine incorporates only these engines. The
consideration of more engines is straightforward though.

Web Search and Mining – Information Retrieval 457

In QuadSearch, we treat all four component search engines equally. The reason we do
this is due to the following observations: (i) all of them are considered by experts as
“major” search engines, (ii) during their lifetimes they have been proved reliable and
(iii) most users and metasearch engines prefer them. The default rank aggregation
method of QuadSearch is rank-based. Each returned ranked item is assigned a score
based on the following formula:

n
m kn

ske

⎟
⎠
⎞

⎜
⎝
⎛ +

=

1
10

 (1)

where S is the sum of all rankings that the item has taken, n is the number of search
engine top-k lists the item is listed in, m is the total number of search engines
exploited, k is the total number of ranked items that QuadSearch uses from each
search engine. We named this weight as ke. The less the ke value for an item, the
larger the final rank this item will take is. For example, consider the following listings
of two search engines (see Table 1) for a particular query:

Table 1. Results of two search engines for a particular query.

Rank SE1 SE2

1 U1 U11

2 U2 U12

3 U3 U13

4 U4 U14

5 U5 U4

6 U6 U15

7 U7 U16

8 U8 U17

9 U9 U18

10 U10 U10

Let us elaborate a bit more on this table. Firstly, we presume that we deal with the
top-10 lists (k=10) from each conventional search engine (SE: search engine). Also
we name the URLs of each result as Ui, in order to demonstrate the overlapping URLs
more easily. As we can see, there are two overlapping URLs in the above listings, the
U4 which was ranked 4-th by SE1 and 5-th by SE2 and the U10 which was ranked 10-th
by both search engines. All the others are found only in one of the two search engine
top-10 lists. In Table 2 we can see the ranking scores of ke and Borda Count methods

11th Panhellenic Conference in Informatics 458

for each URL. In this point we should mention a compact. We assume that when two
URLs have the same score, then the URL that is in both top-10 lists will be ranked
first, otherwise the URL of the first search engine will be ranked first.

Table 2. Ranking scores of ke and Borda Count methods.

URL ke ke rank BC18 BC rank

U1 0.5 1 18 3
U2 1 4 17 5
U3 1.5 7 16 7
U4 0.5625 3 29 1
U5 2.5 10 14 10
U6 3 11 13 11
U7 3.5 13 12 13
U8 4 15 11 15
U9 4.5 17 10 17
U10 1.25 6 18 2
U11 0.5 2 18 4
U12 1 5 17 6
U13 1.5 8 16 8
U14 2 9 15 9
U15 3 12 13 12
U16 3.5 14 12 14
U17 4 16 11 16
U18 4.5 18 10 18

Finally in Table 3 we can see the final top-10 lists of the two methods.
Table 3. Final top-10 lists of ke and BC methods.

Rank SE1 SE2 ke result list
(top10)

BC result list

(top10)
1 U1 U11 U1 U4

2 U2 U12 U11 U10

3 U3 U13 U4 U1

4 U4 U14 U2 U11

5 U5 U4 U12 U2

6 U6 U15 U10 U12

7 U7 U16 U3 U3

8 U8 U17 U13 U13

Web Search and Mining – Information Retrieval 459

9 U9 U18 U14 U14

10 U10 U10 U5 U5

We must stress some differences between Borda Count and the ke method:

• The Borda Count method takes into consideration the total number of
candidates, while ke takes into consideration the number of voters.

• Some Borda Count variations assign scores to each and every candidate; a
candidate which is not included in the top-k list of a particular search engine
takes a part of the remaining points. This does not hold for the ke method. In
the ke method, a candidate will be assigned a score only when it is contained
in the top-k list of a particular search engine, otherwise its score is zero.

• The ke method takes into consideration the total number of exploited search
engines, the number of search engines where a candidate has been appeared
and the size of the top-k list.

• The ke method has better “resolution”, in the sense that the possibility of two
scores being the same is less than that of the Borda Count. For example, in
Table 2 we can see that Borda Count assigned three URLs with the same
score (U1, U10, U11 with score 18) while the ke method has given U10 a
different score.

• The lower the ke weight an item has the higher will be ranked in the final
result list. In Borda Count holds the opposite.

3.2 Antispam version of ke method

Informaly, we say that a search engine has been spammed by a page in its result list
when it ranks the page too highly with respect to the other pages, according to the
view of a “typical” (average) user. This is unavoidable for search engines, because
their ranking algorithms have “defects” that can be exploited by Web page developers
in order to achieve an undeservedly high page rank. Thus, if a page spams all or even
most of the search engines, then the metasearch engine could not defeat this problem
as well, because the aggregation function would work with bad data.

In QuadSearch we gave to the users the option to use an antispam version of ke
method. This method takes into consideration the Condorcet Criteria (Francis, 2005).
In the context of metasearching, these criteria tell us, in a few words, that an item
which is enlisted in the top-k lists of some search engines should be ranked above an
item that is ranked in the top-k lists of fewer search engines. The QuadSearch engine
attempts to satisfy the intuition that if a page spams fewer than half of the search
engines, then the majority of search engines will prefer a relatively good page to a
spam page. The following pseudocode describes the antispam version:

11th Panhellenic Conference in Informatics 460

1. Find which items appear in more than half pages (let the number of these
items be c).

2. Apply the ke method for these items.
3. Position them in QuadSearch result list, starting at rank 1.
4. Apply the ke method for the rest of the items.
5. Position them in QuadSearch result list, starting at rank 1+c.

4. System Implementation
In the following paragraphs, we describe the technical issues regarding the
implementation of the new metasearch engine. The most significant modules of
QuadSearch are the Quad Bot, the Object Builder, the Classification Module and the
Presentation Module. These modules are described in the next subsections. A
schematic diagram of the architecture is depicted in the left part of Figure 1.

Figure 1. (Left) Architecture of QuadSearch. (Right) QuadSearch's homepage.

User interface and database selector. The user can switch among these features
from either the home page or the results page. Regarding the database selector, the
user has the option to choose which search engines will be exploited (see the right
part of Figure 1. Also, the user can select the search engines that will participate in
the search process, the number of results to be retrieved per resource, the number of
results that will be displayed per page etc. The interface includes an extra option to
prevent spam records from entering the ke list. Finally, in the options page the user
can select the ranking algorithm (ke or Borda Count).

Quad bot. The Quad Bot receives its inputs from both the database selector and the
user interface. It is responsible for validating the input data and parameters, passing
the query to the selected databases and collecting the results. Its internal structure is
depicted in the left part of Figure 2.

Web Search and Mining – Information Retrieval 461

Parameter Receiver/Validator. It accepts all the data coming from the database
selector and the user. The validation process includes transformation of the inputs in a
way that can be sent to the search engines.

Query Dispatcher. The Query Dispatcher is the Quad Bot's heart. It gets the validated
data and creates http requests to the selected search engines. This is the slowest
procedure of the whole system; its speed depends on the number of the invoked
search engines, the requested results, the server's Internet connection, etc. We have
accelerated this procedure by submitting all the requests to the search engines
simultaneously. To achieve that, we had to employ the libcurl library with cURL
(client URL) extensions 7.16.0 for PHP 5.1 that support multiple connections at a
time. By building the Query Dispatcher this way, we managed to shrink the idle time
to no more than 1 or 2 seconds.

Result Collector. The Result Collector embraces the http responses transmitted by the
search engines. Each involved search engine must respond to the Query Dispatcher's
request, by sending the source code of its result page. The module retrieves the Rank,
the URL, the Title and the Abstract for each candidate. When it receives all the
information, it stores it temporary and sends it to the next module for validation.

Figure 2. (Left) Quad Bot's structure. (Right) Object Builder's architecture.

Result Validator. The Result Validator is the most complex compartment of this
module, as it performs multiple conversions to the collected data. The URL validation
part is responsible for the appropriate formatting of the collected URLs, so that the
overlapping candidates could be correctly detected later.

11th Panhellenic Conference in Informatics 462

Object Builder. The Object Builder is the bridge between the Quad Bot and the
Classification module; its architecture is depicted in the right part of Figure 2.

Array with validated data. The Object Builder's input is the array that the Quad Bot
produces. It contains all the collected results that passed the Result Validator's checks.

Property Constructor. This module implements a class that describes the properties of
our objects. The properties that are being assigned to the objects are the URL, the
Title, the Abstract and one to four Rankings (one for each selected search engine).

Object Containers 1 and 2. In this compartment, all the objects (the results) are being
transferred to two new, identical object containers. The results enter the containers in
groups. The first group consists of the results that the first search engine returns, the
second group consists of the results that the second engine returns, etc. These
containers will be the main tool in our effort to compare the search engine rankings
and generate the final ranked list.

Classification Module. The Classification Module accepts the two result containers
from the Object Builder and performs the result ranking according to the selected
ranking algorithm. Its architecture is illustrated in the left part of Figure 3.

Overlapping Detector. This section is responsible for detecting the overlapping
candidates and for creating the final candidate list. It receives input from the two
object containers and compares each object from the first container, to all objects
from the second container. Finally, the procedure constructs one container that holds
all candidates, overlapping or not.

Ranking Module. The Ranking Module accepts the candidate container that the
Overlapping Detector constructs, and the ranking algorithm that the user selected. The
Ranking Module will apply the ke algorithm by default, unless the user selects
another supported algorithm. Next, it computes the weight factors and/or the Borda
Scores. Finally, it sorts the candidate list on ascending (for weight factors) or
descending (for Borda Scores) order and passes this list to the Presentation Module.

Presentation Module. The task of this module is to construct the result page that will
be presented to the user. In comparison to the other system compartments, this one
has the simplest architecture. In the right part of Figure 3, we illustrate a schematic
diagram of its internal structure.

Web Search and Mining – Information Retrieval 463

Figure 3. (Left) Classification Module. (Right) Presentation Module.

5. Innovative Features

In this section, a quick walkthrough of Quad Search's innovative features is presented.

1. Classic/Array View Switch. The user is able to view the results in the classic way,
but can also select the array view that provides an easier way of comparing the
collected results.

2. Related Searches. Apart from the desired results, the Quad Bot is capable of
grabbing almost everything from the results' pages that the exploited search engines
transmit. In order to provide more specific results, the search engines prompt their
users to submit the queries that they propose. The Quad Bot can fetch these query
strings and present it to the result page through the Presentation Module.

3. File Type Filter. Many users tend to search the Web for specific file types (e.g.,
Adobe Acrobat or Microsoft Word files) and QuadSearch includes a similar feature.
The user can select one of the most popular file extensions and perform a Web search.
At this time, the QuadSearch engine supports searches for the following file formats:
PDF, DOC, XLS, PS, RTF and PPT.

4. Search for Scientific Articles. QuadSearch supports searches for scientific articles
in the richest scientific databases. Google Scholar is also included in these databases.
This type of search can be accessed from the “Science” link and will return papers,
technical reports and books related to the query terms.

11th Panhellenic Conference in Informatics 464

5. Query String Explosion Feature. This feature (see Figure 4) splits the query
string to its search terms and gives the user the ability to perform `single term'
searches. For example, the query string `electronic engineering' is being split to the
terms `electronic' and `engineering'. By clicking on any of these words QuadSearch
will perform a Web search.

Figure 4. The results' page with QuadSearch's innovative features.

6. Ranking Algorithm Selector. This feature (see Figure 5) is only accessible from
the options page and provides the user with the facility to determine how the collected
results will be ranked, by employing one (or more) of the supported algorithms. At
this time, QuadSearch supports our ke Algorithm and the Borda Count method. It also
provides a third option that utilizes both algorithms and presents the results in array
view (comparison mode). It is in our intentions to include more ranking algorithms in
the system (e.g., Markov Chains).

Web Search and Mining – Information Retrieval 465

Figure 5. Options with the Ranking Selector and the Engine Bombing Protection.

7. Engine Bombing Protection. When various search resources are being exploited,
a possibility that many similar results will enter the result's list always exists. This
phenomenon is called engine bombing. For example, it is not very informative and
useful for a user to submit a query and receive five or more results from the same
domain in the top, say, twenty listing. Thus, we developed a feature (which can be
enabled or disabled) to prevent multiple results coming from the same domain to
enter into the result list; alternatively the user can select the maximum number of
such results.

6. Concluding remarks and future work
In this article, we considered the issue of developing a new metasearch engine to
assist in the process of Web information retrieval. The main motivation to develop
this novel metasearch engine was the common intuition that a rank aggregation
algorithm should: a) be related to the comparison of the top-k lists of each
conventional search engine, and b) deal with the problem of the spam into metasearch
result lists. Thus, we came up with a pair of new methods for rank aggregation, i.e.,
the ke method and its antispam version. We injected some new parameters, like the
number of the top-k lists that a page appears, the total number of exploited search
engines and the size of the top-k lists. The new metasearch engine is named
QuadSearch, and it is publicly available at http://cheetah.csd.auth.gr/~lakritid/. For
the near future, we are going to implement anonymous personalization techniques,
further result filtering thorough search hints. Furthermore, we are orientated towards
making QuadSearch a scientific tool by implementing most of the bibliometric
indexes based on the h-index (Katsaros et al., 2007) and developing some new
variations of it.

11th Panhellenic Conference in Informatics 466

References
Baeza-Yates, R., Ribeiro-Neto, B. (1999), Modern Information Retrieval, Addison-

Wesley and ACM Press.
Dwork, C., Kumar, R., Naor, M., Sivakumar, D. (2001), Rank aggregation methods

for the Web, Proceedings of ACM Conference on World Wide Web (WWW), pp.
613–622.

Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E. (2004), Comparing
partial rankings, Proceedings of ACM Symposium on Principles Of Database
Systems (PODS), pp. 47–58.

Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E. (2006), Comparing
partial rankings, SIAM Journal on Discrete Mathematics, vol. 20, pp. 628–648.

Fagin, R., Kumar, R., Sivakumar, D. (2003), Comparing top k lists, SIAM Journal on
Discrete Mathematics, vol. 17, no. 1, pp. 134–160.

Francis, N. (2005), Voting as a method for rank aggregation and spam reduction on
the Web, Undergraduate senior thesis (CPSC 490). Department of Computer
Science, Yale University.

Gulli, A., Signorini, A. (2005), Building an open source meta-search engine,
Proceedings of ACM Conference on World Wide Web (WWW), pp. 1004–1005.

Katsaros, D., Sidiropoulos, A., Manolopoulos, Y. (2007), Age-decaying h-index for
Social Networks of Citations, Proceedings of Workshop on Social Aspects of the
Web (SAW).

Lu, Y., Meng, W., Shu, L., Yu, C., Liu, K.-L. (2005), Evaluation of result merging
strategies for metasearch engines, Proceedings of IEEE International Conference
on Web Information Systems Engineering (WISE), pp. 53–66.

Meng, W., Yu, C., Liu, K.-L. (2002), Building efficient and effective metasearch
engines, ACM Computing Surveys, vol. 34, no. 1, pp. 48–89.

Page, L., Brin, S., Motwani, R., Winograd, T. (1999), The PageRank citation
ranking: Bringing order to the Web, Stanford University Technical Report, TR-
1999-66.

Renda, M.E., Straccia, U. (2003), Web metasearch: Rank vs score based rank
aggregation methods, Proceedings of ACM International Symposium on Applied
Computing (SAC), pp. 841–846.

Souldatos, S., Dalamagas, T., Sellis, T. (2005), Sailing the Web with Captain Nemo:
A personalized metasearch engine, Proceedings of the ICML workshop: Learning
in Web Search (LWS).

Sugiura, A., Etzioni, O. (2000), Query routing for Web search engines: Architecture
and experiments, Computer Networks, vo. 33, no. 1–6, pp. 417–429.

Wu, Z., Meng, W., Yu, C., Li, Z. (2001), Towards a highly-scalable and effective
metasearch engine, Proceedings of ACM Conference on World Wide Web
(WWW), pp. 386–395.

