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Abstract 
In this paper, we present the FOLtoNL system, which converts first order logic (FOL) 
sentences into natural language (NL) ones. The motivation comes from an intelligent tutoring 
system teaching logic as a knowledge representation language, where we use it as a means for 
feedback to the users. FOL to NL conversion is achieved by using a rule-based approach, 
where we exploit the pattern matching capabilities of rules. The system consists of a rule-
based system and a lexicon. The expert system implements the conversion algorithm, which is 
based on a linguistic analysis of a FOL sentence, and the lexicon provides grammatical 
information that helps in producing the NL sentence. The whole system is implemented in 
Jess, a java-based expert system shell. The FOLtoNL is not complete in all its aspects yet. 
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1. Introduction 
To help teaching the course of “Artificial Intelligence” in our Department, we created 
a web-based intelligent tutoring system, called Artificial Intelligence Teaching 
System (AITS) [Hatzilygeroudis etal (2005)]. One of the issues that AITS deals with 
is the conversion of natural language (NL) sentences into first-order logic (FOL) 
formulas. Given that this is a non-automated process, it is difficult to give some hints 
to the students-users during their effort to convert an “unknown” (to the system) NL 
sentence into a FOL formula. However, some kind of help could be provided, if the 
system could translate (after checking its syntax) the proposed by the student FOL 
formula into a NL sentence. The student then will be able to compare the initial NL 
sentence with the one that its FOL formula corresponds to. In this way, it is easier to 
see whether his/her proposed FOL formula is compatible with the given NL sentence 
and perhaps make some amendments, before submitting the final answer. 

Although there are research efforts at converting NL sentences to FOL formulas, it 
seems that there are no such efforts for the inverse process, the conversion of FOL 
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formulas to NL sentences. The obvious reason is that it is not usually a need, rather 
the inverse is. However, in our case, this is not the case. 
In this paper, we introduce a method for converting FOL formulas into NL sentences, 
called FOLtoNL conversion. To achieve that, we use the expert systems approach 
alongside natural language processing aspects.  

The structure of the paper is as follows. Section 2 deals with related work. Section 3 
presents the basic principles of FOL to NL conversion process. Section 4 refers to the 
implementation of the FOLtoNL system and presents its architecture. In Section 5, 
the function of the lexicon of the system is described, whereas Section 6 presents 
some examples of the system application. Section 7 deals with current restrictions of 
the systems and give hints for their solution and finally Section 8 concludes the paper.  

2. Related Work 
In the existing literature, we couldn’t trace any directly similar effort, i.e. an effort to 
translate FOL sentences into natural language sentences. However, we traced a 
number of indirectly related efforts, those of translating some kind of natural 
language expressions into some kind of FOL ones.  

In [Rodríguez de Aldana (1999)] an application of Natural Language Processing 
(NLP) is presented. It is an educational tool for translating Spanish text of certain 
types of sentences into FOL implemented in Prolog. This effort gave us a first 
inspiration about the form of the lexicon we use in our FOLtoNL system. 

In [Fuchs et al (1999)], ACE (Attempto Controlled English), a structured subset of the 
English language, is presented. ACE has been designed to substitute for formal 
symbolisms, like FOL, in the input of some systems in order to make the input easier 
to understand and to be written by the users. This is useful for theorem provers and 
model builders which are difficult to use for those not familiar with them. ACE 
expressions are automatically and unambiguously translated in the formal symbolism 
used as input language for such systems. 

In [Bos (2003)], the importance of model building in natural language understanding 
systems is stressed by explaining how such a process can be used. Model building is 
used as an intermediate step for understanding natural language sentences. 

Finally, in [Pease and Fellbaum (2004)], a Controlled English to Logic Translation 
system, called CELT, allows users to give sentences of a restricted English grammar 
as input. The system analyses those sentences and turns them into FOL. What is 
interesting about it is the use of a PhraseBank, a selection of phrases, in order to deal 
with the ambiguities of some frequently used words in English like have, do, make, 
take, give etc. CELT solves ambiguities via WordNet. 
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3. FOLtoNL Conversion Process 
Our FOLtoNL conversion algorithm takes as input FOL formulas of the following 
form (in a BNF notation, where ‘[ ]’ denotes optional and ‘< >’ non-terminal 
symbols): 

[<quant-expr>] <stmt1> [=>] [<stmt2>]. 
The formula is in its Prenex Normal Form (i.e. all quantifiers are at the left-hand side 
of the formula), where <quant-expr> denotes the expression of quantifiers in the 
formula, ‘=>’ denotes implication and <stmt1> and <stmt2> denote the antecedent 
and the consequent statements of the implication. <stmt1> and <stmt2> are FOL 
statements that do not contain any quantifier or implication. So, our algorithm deals 
with FOL formulas with only one level of implication. Therefore, we call it the basic 
FOLtoNL conversion algorithm. However, it can be easily extended to FOL formulas 
with more implication levels. For typing convenience, we use the following symbols 
in our FOL formulas: ‘~’ (negation), ‘&’ (conjunction), ‘V’ (disjunction), ‘=>’ 
(implication), ‘forall’ (universal quantifier), ‘exists’ (existential quantifier). 

For example, the following FOL formula is a proper input to the algorithm: 
(forall x)(exists y)human(x)&mother(y,x)=>loves(y,x) 

where <quant-info> ≡ “(forall x)(exists y)”, <stmt1> ≡ “human(x)& 
mother(y,x)”, <stmt2> ≡ “loves(y,x)”. 

The output of the algorithm has the following structure: 
[<interpret-quant-info>] [if] <interpret-stmt1> [then] [<interpret-stmt2>] 

where <interpret-quant-info> denotes the interpretation of quantifiers, <interpret-
stmt1> and <interpret-stmt2> the interpretation of <stmt1> and <stmt2> respectively 
in NL and ‘if’, ‘then’ are terminal symbols. 

The high-level description of our algorithm is as follows: 

1. Scan the user input and determine <quant-info>, <stmt1> and <stmt2> 
2. if <quant-info> ≠ ∅ 
 2.1 if <stmt2> ≠ ∅, the output has the form 
  <interpret-quant-info> if <interpret-stmt1> then <interpret-stmt2> 
 2.2 the output has the form 
  <interpret-quant-info> <interpret-stmt1> 
3. the output has the form 
  <interpret-stmt1> 

In the sequel, we explain how <interpret-quant-info>, <interpret-stmt1> and 
<interpret-stmt2> are determined. 
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3.1 Interpretation of Quantifiers 
We distinguish four cases of quantifiers: (a) universal quantifier, (b) negated 
universal quantifier, (c) existential quantifier and (d) negated existential quantifier. 
Also, we denote by ui, nui, ei and nei the variables bound to the previous types of 
quantifiers respectively. 

The algorithm for quantifiers interpretation is as follows: 
1. Set <interpret-univer-quant-info> ≡ ∅, <interpret-exist-quant-info> ≡ ∅, 
 <interpret-neg-exist-quant-info> ≡ ∅ 
2. If <quant-info> contains both universal quantifiers and negated universal 

quantifiers, 
 <interpret-univer-quant-info> ≡ “for all u1, u2, …, un and for some but 
            not all nu1, nu2, …, num” 
3. If <quant-info> contains only universal quantifiers, 
  <interpret-univer-quant-info> ≡ “for all u1, u2, …, un” 
4. If <quant-info> contains only negated universal quantifiers, 
  <interpret-univer-quant-info> ≡ “for some but not all nu1, nu2, …, num” 
5. If <quant-info> contains existential quantifiers, 
 5.1 if the number of bound variables is one, 
   <interpret-exist-quant-info> ≡ “exists e1 such that” 
 5.2 else, <interpret-exist-quant-info> ≡ “exist e1, e2, …, el such that” 
6. If <quant-info> contains negated existential quantifiers, 
 6.1 if the number of bound variables is one, 
   <interpret-neg-exist-quant-info> ≡ “there is no ne1 such that” 
 6.2 else, <interpret-neg-exist-quant-info> ≡ “there are no ne1, ne2, …, ner  
         such that” 
7. <interpret-quant-info> ≡ <interpret-univer-quant-info> <interpret-exist-quant-info>  
        <interpret-neg-exist-quant-info> 

3.2 Interpretation of antecedent and consequent statements  
We assume that the antecedent and consequent statements of an implication (<stmt1> 
and <stmt2>) have the following format: 

<atom1> <con12><atom2><con23><atom3>…<com(n-1)n><atomn> 
where <conij> is one of the connectives ‘V’ and ‘&’. However, at the present version 
an antecedent or consequent statement cannot have both ‘V’ or ‘&’. The 
interpretation of such a statement has the following format: 

<interpret- atom1> <interpret- con12><interpret- atom2>…< interpret- atomn> 
where <interpret- conij> ≡ “or”, if conij ≡ “V”, and <interpret- conij> ≡ “and”, if 
conij ≡ “&”. 
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In the present version, we consider only atoms with predicates of arity one and two, 
called single-term and two-term atoms respectively. We further distinguish between 
plain and negated atoms. Interpretation of a single-term atom is presented in Table 1. 
Furthermore, interpretation of two-term atoms is presented in Table 2. The symbol P 
means that predicate P is modified as far as its ending is concerned to be compatible 
with the verb expression it is associated with. Interpretation of constants and variables 
is the constants and variables themselves. Interpretation of function expressions is 
presented in Table 3. Notice that we consider function expressions with one or two 
terms only that are no other function expressions. 

Table 1. Interpretation of single-term atoms 

P P(t) ~P(t) 
verb <interpret-t> does P <interpret-t> does not P
noun <interpret-t> is a P 

<interpret-t> is an P
<interpret-t> is not a P 
<interpret-t> is not an P 

adjective <interpret-t> is P <interpret-t> is not P 

Table 2. Interpretation of two-term atoms 

P P(t1, t2) ~P(t1, t2) 
verb <interpret-t1> P <interpret-t2> <interpret- 1> does not P <interpret-t2> 
noun <interpret-t1> is the P of <interpret- 

2> 
<interpret-t1> is not the P of 
<interpret-t2> 

Table 3. Interpretation of function expressions 

<interpret-ti> t f(t) f(t1, t2) 
noun the f of t 
adjective the f t the f of t1 and t2 

 
To be able to recognize which type of speech is a predicate or a term, in order to 
apply the rules of Tables 1-3, we created a lexicon. The lexicon is actually a base of 
facts and is presented in the next sections. 

4. Implementation Aspects 
The FOLtoNL process has been implemented in Jess [Friedman-Hill (2003)]. Jess is a 
rule-based expert system shell written in Java, which however offers adequate general 
programming capabilities, such as definition and use of functions. The architecture of 
the implemented system is presented in Figure 1. 
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The system includes two Jess modules, MAIN and LEX. Each Jess module has its 
own rule base and its own facts and can work independently from the rest of Jess 
modules. Focus is passed from one module to the other to execute its rules. ΜΑΙΝ is 
the basic module of the system, whereas LEX is the system’s lexicon. 
Apart from information about English words, the LEX module also includes two rules 
for their treatment. The rule part-of-speech is activated when a fact of the form 
(lemma ?lem) is inserted in LEX. This kind of fact declares that MAIN module needs 
information for the English word ‘?lem’ from the lexicon. When, subsequently, the 
focus is given to LEX the rule fires, looking for the specified word. Provided that the 
word is found, the rule updates the global variable ‘?*part*’ with the word’s ‘part of 
speech’. The rule expression is used for words with a special syntax. This rule returns 
the syntax of such words to MΑΙΝ and makes it possible to appear in the correct from 
in the corresponding interpretation. 
 
 

MAIN 

FACTS RULES FACTS

JESS Inference Engine 

RULES 

LEX  
 
 
 
 
 
 
 
 
 
 

Figure 1. System Arcitecture 

Jess uses the notion of templates, which are structured descriptors, consisted of slot-
value pairs, for describing complex facts. We have defined five templates in the 
ΜΑΙΝ module: Atom, Term, Function, SimpleStatement and Statement. Apart from 
its predicate and its terms, each atom (Atom) is characterized as plain or negated. It is 
also characterized by the statement it belongs to (the antecedent or the consequent). 
Each statement (SimpleStatement) consists of a list of the atoms that constitute it and 
the connective between them. The order of the atoms in each statement’s list is the 
same as the order in which they occur in the input formula (sentence). The sentence 
(Statement) represents the whole formula given as input and consists of two 
statements (SimpleStatements), the antecedent and the consequent. Apart from each 
template’s individual slots, all templates have one common slot, ‘interpretation’, 
which is filled in with the corresponding interpretation, when it is available. 

MAIN’s most important function is readinput, which takes the user’s input as an 
argument and processes it as a string. The result is to update the global vectors 
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representing the quantifiers, the statements (antecedent and consequent) and the 
connectives with corresponding values (i.e. bound variables, constituent atoms and 
connectives). Then, readinput calls the function read-atom for atom analysis. For 
each atom an appropriate Atom fact is created. For identification and interpretation of 
the terms of each atom, read-atom calls read-term, atom-interpret and function-
interpret (when the term is a function). To this end, function word-pos is employed, 
which takes as an argument a word (representing either a function symbol or a 
predicate) and returns an one-character symbol, that shows which is the type of the 
word (i.e. noun, verb or adjective) and a string, which is the appropriate form of the 
word (e.g. with changes in its ending), if necessary. This refers to P in Tables 1 and 2.  

Two other interpretation functions are simple-interpret and statement-interpret, for 
the two statements and the final output respectively. The function simple-interpret 
interprets a statement based on the interpretations of its atoms and the connective 
associated with them. The function statement-interpret uses the value of the global 
vectors representing the quantifiers and their bound variables and the interpretations 
of the statements to update the slot ‘interpretation’ of Statement. The value of this slot 
is the output of the system. 

After readinput has finished its operation, one or two SimpleStatement facts and a 
Statement fact have been created. The Atom, SimpleStatement and Statement facts 
have their ‘interpretation’ slots empty, waiting for their values. The values are 
deduced via ΜΑΙΝ rules, which call the interpretation functions we mentioned above. 
First, all the atoms are interpreted via the rule atom-interpret. After all atoms have 
had their ‘interpretation’ slots updated, statements are interpreted via the rule simple-
interpret. After statements have been interpreted, interpretation of the whole formula 
takes place via the rule statement-interpret. 

5. The Lexicon 
The lexicon consists of a large number of facts concerning words, called word-facts. 
The lexicon was built using an existing text file (LEX.txt), which contains all English 
words: http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/keiras. 
The file includes one line string for each English word. From each line’s string we 
use 26 characters. Each of the first 6 characters denotes a different characteristic of 
the word: ‘part of speech’ (pos), ‘past participle’ flag, ‘negative’ flag, ‘to be’ flag, 
‘verb + ing’ flag and ‘aux’ flag. Characters 7-26 are left for the English word itself.  

So, we transformed each line to an appropriate fact, keeping the extracted information 
(from LEX.txt) and adding some new characteristics (?exp, ?gen etc). We also 
removed words that are very unlikely to appear in FOL sentences. This way we 
reduced the final lexicon’s size. A small part of the Lexicon facts are presented in 
Figure 2. Each word-fact is an instance of the following template: 

(word ?type ?gen ?form ?exp ?lemma ?lem) 
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where ‘word’ declares that it is a fact describing a word and the rest are variables 
representing the fields that describe the word, which are explained below: 
• ?type: denotes the type of the word and takes one of the following values: 
• ?gen: denotes the gender of the word and takes one of the following values: 
• ?form: denotes the form (singular or plural for nouns and adjectives, person for 

verbs) and takes one of the following values: 
• ?exp: denotes the existence of a special syntax of the word; if such syntax exists; 

it’s an index to a fact of the ‘expression’ template and ‘0’ otherwise. 
• ?lemma: is the form by which we look up the word in a lexicon. 
• ?lem: the word that the fact is about. 
 

(deffacts lexicon 
 
 (word J 0 0 a1 able able) 
 (word J 0 0 0 abnormal abnormal) 
 (word V 0 1 0 accept accepts) 
 (word J 0 0 0 artificial artificial) 
 (word V 0 0 a1 appeal appeal) 

(word V 0 1 a1 appeal appeals) 
                          ......................................... 
) 

 
 
 
 
 
 
 
 
 
 

Figure 2. Lexicon sample 

6. System Application 
In Figure 3, an example use of the FOLtoNL system is illustrated, which reveals the 
current user interface of the system. 
 
 

Jess> (batch FOLtoNL.clp) 
 
First Order Logic to Natural Language 
Give a sentence in First Order Predicate Calculus: 
 
(forall x)(exists y)loves(x,y) 
 
INTERPRETATION : forall x exists y such that x loves y . 

 
 
 
 
 
 
 
 

Figure 3. An example use of the FOLtoNL system 
 
In Table 4, a number of input-output pairs to the FOLtoNL system are presented. 
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7. Future Work 
The FOLtoNL system has a number of restrictions that need further development. 
First, FOLtoNL gives interpretations into a NL-like language that is closer to FOL 
than to pure NL. This requires a second level of interpretation, above the present one. 

Present level of FOLtoNL conversion has also its own problems. It has a problem 
when interpreting sentences which are entirely in the scope of a negation. This means 
that while the system can deal with ‘~’, when it appears in front of a single atom or a 
quantifier, it can’t deal with it, when it has an entire sentence or statement in its 
scope. As a consequence, the user bears the burden of appropriately reforming his 
input. A possible solution would require some changes in the readinput function, to 
be able to store extra information.  

Table 4. Example interpretations of FOL sentences using FOLtoNL 

Input Output 
(forall x)(forall y) likes(x,y) => appeals(y,x) forall x and y if x likes y then y appeals to x 
(forall x) bat(x) => ~feathered(x) forall x if x is a bat then x is not feathered 
(forall x)(loves(father(x),x)&loves(mother(x),x)) forall x the father of x loves x and the mother 

of x loves x 
~(forall x)(exists y)cares(x,y) for some but not all x , exists y such that y cares 

about x 
is(sum(2,3),5) the sum of 2 and 3 is 5 
(forall x)(exists y)(exists z)(exists w) human(x) 
=> name(y,x) & age(z,x) & birthday(w,x) 

forall x exist y , z and w such that if x is a 
human then y is the name of x and z is the age 
of x and w is the birthday of x 

(forall x) bird(x) & ~flies(x) &swims(x) => 
penguin(x) 

forall x if x is a bird and x does not fly and x 
does swim then x is a penguin 

Another constraint is forced upon the use of ‘=>’, which can only occur once in the 
input sentence. So, we cannot use more than one-level implications in the input 
sentence, such as “(stmt1 => (stmt2 => stmt3))”. This problem could be solved using 
an extra template concerning implication. 
Another restriction is that the connectives in each sub-sentence must be of the same 
kind (either ‘&’ or ‘V’). The truth is that we can use different connectives, but in that 
case the system will give an ambiguous output. For example, for “if <a> and <b> or 
<c>...” we can’t tell if the initial sentence was “(a & b) V c…” or “a & (b V c)…”. 
This information could be given in the output via the appropriate use of comas.  
Furthermore, the atoms and the functions can have only one or two terms. Hence, 
relations between three or more entities can’t be expressed. Moreover, the system 
can’t interpret functions with other functions as their terms. To solve this problem, 
changes to the read-atom function should be made.  
Another problem has to do with adjectives in comparative or superlative form. The 
system cannot discriminate the different forms of an adjective, so uses the same 
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syntax for those different forms. This problem can be solved if we include such extra 
information in the lexicon. 
Finally, another limitation concerns the lexicon of the system. It currently contains a 
limited number of words. It should be extended to include as more as possible. 

8. Conclusions 
In this paper, we present the FOLtoNL system, which converts first order logic (FOL) 
sentences into natural language (NL) ones, to help students. FOL to NL conversion is 
achieved by using a rule-based approach, where we exploit the pattern matching 
capabilities of rules. The system consists of a rule-based expert system and a lexicon. 
The expert system implements the conversion algorithm, which is based on a 
linguistic analysis of a FOL sentence, and the lexicon provides grammatical 
information that helps in producing the NL sentence. The whole system is 
implemented in Jess, a java-based expert system shell. We are not aware of other 
similar efforts, although there are efforts to deal with the inverse problem. Neither of 
them, however, uses an expert systems approach. 
Regarding the usefulness of our system, the first reactions of the students were 
encouragingly positive. We need, however, a more systematic user study confirming 
our intuition about the system’s usefulness and this is one of our future goals. Also, as 
illustrated in Section 7, our effort has not been completed yet. The FOLtoNL system 
has a number of restrictions that are challenges for further work. 
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