
Application Of Heuristics, Genetic Algorithms &
Integer Programming At A Public Enterprise

Water Pump Scheduling System

Christos Gogos¹,³, Panayiotis Alefragis¹,² and Efthymios Housos¹

¹ Computer Systems Lab., Dept. of Electr. & Computer Eng., University of Patras
² Dept. of Telecom. Systems & Networks, TEI of Messolonghi, Varia, Nafpaktos

³ Dept. of Finance & Auditing, TEI of Eipirus, Preveza
{cgogos, alefrag, housos@ece.upatras.gr}

Abstract

In this paper the problem of minimizing the electricity cost required by a water storage and
disposal system is analyzed. Three solution approaches are presented focused in the way that
various pumps will be scheduled to operate and satisfy prospected water demand while at the
same time respect availability of water and reservoirs capacity. The first solution uses a
heuristic approach closely related to the way a human operator might have used to solve the
problem. The second solution uses mathematical programming, formulates the problem as an
Integer Programming problem and solve it by using a Branch and Bound commercial solver.
Finally the third solution uses Genetic Algorithms and defines a fitness function describing the
attractiveness of each solution for a set of solutions and through a number of evolution steps
creates a population with desirable characteristics. A comparative study of the three
approaches is presented. The actual formulas that compute the electricity cost is used for the
comparisons. Those formulas state the fact that demand peaks especially during high demand
periods result in high electricity cost. Data used in our experiments were provided by the
municipal enterprise of water supplies and sewage of Chania (Crete).

Keywords: heuristics, genetic algorithms, integer programming, pump scheduling, water
reservoir management, optimization.

1. Introduction
Water is said to be one of the most valuable assets for the 21st century. Availability of
high quality drinking water without interruptions is considered to be a measure of
achievement for societies. Many cities are served for their water needs by water
resources that are not always in abundance and this situation is expected to be worse
in the future. Usually a group of water customers are served by water pipes that form
networks which are directly or indirectly connected to a reservoir. A reservoir
concentrates water to serve demand and this is usually done by operating electrical
pumps. The planning of the pumping intervals for each pump in order to reduce the
cost of the electricity consumed while maintaining certain level for the water storage

11th Panhellenic Conference in Informatics 580

reservoirs is a challenging exercise for every water department. This stems from the
fact that the energy company pricing policy promotes the balanced use of energy
throughout the day. A number of different approaches have been used in various
situations describing similar problems. In [Ormsbee, Lansey (1994)] a number of
linear and nonlinear models for the pump scheduling problem are presented and
solved. The use of a genetic algorithm for a similar problem is described in [Mackle
et. Al. (1995)]. [Savic et. Al. (1997)] introduces the concept of additionally
examining wearing of the pumps because of an extended number of activations and
deactivations resulting in a model of a multiobjective optimization problem. The use
of a mixed integer nonlinear programming formulation is presented in [Biscos et. Al
(2003)] while [Kelner et.Al. (2003)] uses genetic algorithms for optimal pump
scheduling in water supply. Finally [Baran et. Al. (2005)] models water distribution
and pump scheduling as multiobjective optimization problems. In section 2 the pump
scheduling problem is presented, the electricity charge model is analyzed and a
mathematical description of the problem is given. The solution methodology of the
heuristic approach is presented in section 3 followed by description of solution
methodologies for the mathematical programming approach and the genetic algorithm
approach. In section 4 software design issues of the system and libraries and
frameworks that were used are examined. In section 5 the solution methodologies are
compared. Finally conclusions and future work are presented.

2. Pump Scheduling Problem
The problem that has been modeled involves the creation of an operation schedule for
a duration of N periods for a system consisting of a number of reservoirs each having
a number of pumps with different characteristics. Typical values for N and period
length are 48 and 30 minutes respectively. A profile exists about the available water
per period which is comprised by forecasted values. All pumps are provided with
water from the same resource so pump operation should be organized so as to avoid
request of water in cases where the available water volume has already been drained
by other pumps operating in parallel. Each reservoir with its associated pumps serves
a number of water customers and a profile about the prospected water demand per
period is known to the system. Every reservoir has a specified capacity volume
imposed by its construction characteristics. Additionally lower level values for each
period define the desired lower water level for each reservoir and often implement
various policy and security issues and concerns. These limits represent the
accumulated knowledge with respect to the time of the day and the season of the year.
Finally initial water volume and desirable water volume at the end of the complete
planning period for each reservoir is specified. The schedule will specify whether
each pump will be operating or not during each period of the time horizon. The
effective pumped water and the electricity used when a specific combination of
pumps are utilized for a given time period, is situation specific and their values are

Algorithms and Complexity 581

experimentally estimated. In Table 1 a sample of actual values used for experiments
are presented. It is worth noticing that the model is non linear and simultaneous
operation of pumps decrease the volume of water that each pump can contribute to
the reservoir.

Table 1. Pumped water – electricity demand

Reservoir 1 [3 pumps]
Pump Combination

Pump1 Pump2 Pump3
Water
inflow

(m3/hour)

Power
demand
(KW)

OFF OFF OFF 0 0
ON OFF OFF 300 120

OFF ON OFF 500 210
OFF OFF ON 550 240
ON ON OFF 700 285
ON OFF ON 750 295

OFF ON ON 900 325
ON ON ON 1000 340

2.1. Electricity Charge Model
The electricity pricing model promotes the use of electricity during certain periods of
the day (night zone) and discourages high demand during certain other periods (peak
zone). ZAX is the maximum value of the requested power demand during peak zone
intervals, ZNYK is the is the maximum value of the requested power demand during
night zone intervals and ZHM is the maximum value of the requested power demand
during non peak or night zone intervals.

KMZ is the maximum value between ZAX and ZHM and di is a discount factor
computed by the following formula.

 di = 50.0 – 50.0 * ZAX / ZHM (1)

Finally ϕ is the angle between the active and reactive requested power for the
location. XZ is the chargeable demand and can be computed from the following
formula.

0.8
* * , cos 0.8

cos
* , 0.8 cos 0.85

0.85
* * , cos 0.85

cos

MRD di

XZ MRD di

MRD di

φ
φ

φ

φ
φ

≤

= ≤

≥

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

≤

 (2)

11th Panhellenic Conference in Informatics 582

In Figure 1 the effect of increasing requested demand during peak hours is depicted.
Cost increases in a piecewise linear function with greater slope for values of ZAX
greater than the maximum value between ZHM and ZNYK.

Cost (Non Peak Hours Demand = 200kW)

4000

4100

4200

4300

4400

4500

4600

4700

4800

4900

130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

Requested Demand during peak hours

Euro

Figure 1. Effect of increasing ZAX

2.2. Mathematical representation
The mathematical representation of the problem is as follows. Let ri∈R be the
individual reservoirs, tj∈T be the time units and xij∈X be the pump combination
number active in reservoir ri at time period tj. The number of feasible pump
combinations is installation specific. Let AWj∈A be the available water for all
functional units in time unit tj, IVi∈I be the initial volume of water at the beginning of
the scheduling period at reservoir ri, UVi∈U be the maximum volume of water at
reservoir ri and EVi∈E be the lowest acceptable volume of water at the end of the
scheduling period at reservoir ri. Also, let LVij∈L be the lowest acceptable volume of
water at time period tj for reservoir ri, Dij∈D be the forecasted water demand for time
period tj and for reservoir ri, Wik∈W be the consumed electricity of reservoir ri when
pump combination k is used, PWik∈P be the pumped volume of water of reservoir ri
when pump combination k is used and Vij∈V be the actual volume of water at the end
of time period rj at reservoir ri. It can easily be observed that

1

1

, , 1, :1...

, , 1, :1...
i ij ik i

ij
ij ij ik ij

IV D PW x k j i n
V

V D PW x k j i−

− + = =⎧⎪= ⎨ − + = >⎪⎩ n
 (3)

The model must follow a set of constraints.

Maximum and minimum volume limit constraints

, :1... , :1...ij ij iLV V UV i n j m≤ ≤ (4)

Algorithms and Complexity 583

Lowest Acceptable water volume at the end of the scheduling period

, :1...ij iV EV i≥ n

.

 (5)

Maximum allowable pumped water

1

, , :1..
n

ik j ij
i

PW AW x k j m
=

<= =∑ (6)

For the solution methodology of this paper, a cost/fitness function that takes into
account three factors which measure the cost and applicability of the proposed
solution is used. These factors are:

1. Requested Demand (RD), which sums the requested power

2. Spike Demand (SD), which counts the difference in the requested
power in consecutive periods

3. Maximum Demand Avoidance (MDA), which measures the
difference in the requested power from the maximum

For every time unit t, the corresponding RDt is calculated as the sum of the requested
power of all the pumping functional units that where operational during a specific
time unit.

1
,

n

t ik it
i

RD W x k
=

= =∑ (7)

The RD is the weighted sum of all RDt. The weight multipliers ct are user defined and
during the night hours ct ∈ [0, 0.5], while during peak hours ct ∈ [2, 5]. Thus

, :1...t t
t

RD c RD t m= ∑ (8)

SD sums the increase of the requested power in consecutive time periods.

1 1max(0,), :1...t t t t
t

SD c RD c RD t m+ += −∑ (9)

It should be noted that it is desirable to minimize SD because a large difference in the
demand of two consecutive periods, creates demand spikes and thus significantly
bigger values for MRD. Moreover, it is desirable that the pumps usage pattern is
smooth in order to maintain medium to high reservoir levels, thus creating a robust
water availability state. Medium to high water availability will also benefit future
power consumption, as in the case of high water demand, the available water will act
as a buffer and fewer pumps will start operating concurrently in order to maintain the
water level in the reservoir.

11th Panhellenic Conference in Informatics 584

MDA counts the difference of MRD and the theoretical maximum requested demand
MRDmax. MRDmax can be calculated as the requested demand when all pumps are
operated concurrently.

maxMDA MRD MRD= − (10)

The fitness objective function calculates the weighted sum of the three factors.

1 2 3min(), 1iO c RD c SD c MDA c= + + =∑ (11)

3. Solution methodology
The user has the option to select any of the three solvers to generate an initial solution
or improve upon the current solution. The user selects or creates new profiles about
demand per reservoir per period, availability of water per period and desirable lower
volume per reservoir per period. Initial volume and desirable final volume per
reservoir and night and peak periods can be selected or altered.

3.1. Heuristic Solver
The heuristic solver implements a simple strategy which tries to rearrange operational
pump configurations from high demand periods to night periods. In this strategy, for
every water reservoir and for every time period, it selects the pump combination that
can provide the water volume which approaches the volume of water for the same
period that is forecasted to be the demand.

forall (r in reservoir)
for all (t in periods)

min=MAXDOUBLE
x[r,t] = null
forall(c in comb[r])
 if (abs(demand[t] – pw[r,c]) < min)

min = abs(demand[t] – pw[r,c])
x[r,t] = c

if(!feasible(x))
repair(x)

This strategy provides feasible solutions most of the time by maintaining a nearly
constant water level and emulates the strategy that has been used in the past by the
users.

Repair algorithm

In case that a constraint is violated the following algorithm is used to repair the
solution. Symbol x[r,t] refers to the selected combination per reservoir r per period t.

Algorithms and Complexity 585

tries=0;
While (!repaired(x)) and (tries <= ACCEPTABLE_NR_OF_REPAIRS)
 If (underflow(x))
 Try firstly in night zone, secondly in
 normal zone and finally in peak zone
 one_more_pump(x)

Else if (overflow(x))
 Try firstly in peak zone, secondly in
 normal zone and finally in night zone

one_less_pump(x)
Else if (request_more_than_available_water(x))

Randomly choose a Reservoir r
locate period t with problem

 x[r, t]=0
increment(tries)

EndWhile
If (repaired(x))

Accept solution
Else

Reject solution

When a lower level constraint is violated the algorithm activates a combination of
pumps in the offending reservoir. It selects the combination that more closely
resembles the previously active combination. A nice feature of the repair algorithm is
that while trying to deactivate pumps it does so by giving priority to peak hours while
in the other hand in trying to activate new pumps it prefers night hours. Subroutine
one_more_pump(x) locates a Reservoir r with underflow problem by randomly
selecting a period rk between the first period and the period that manifested the
problem. In the subroutine’s code symbol aw[t] refers to the available volume of
water per period t, d[r,t], lv[r,t], pw[r,t] and v[r,t] are respectively the demand, the
lower volume, the pumped water and the volume per reservoir r per period t. Finally
symbol tpw[t] refers to the totally pumped water per period t and uv[r] is the upper
volume per reservoir r.

repair_action = false
k = rk
While (repair_action == false) && (k >=1)
 mindiff = MAXDOUBLE
 forall(c in comb[r])
 If ((pw[r,c]>pw(r, x[r,k]))
 && (abs(pw[r,c]- pw(r,x[r,k])) < mindiff)
 && (v[r,k]+ pw[r,c] - pw(r,x[r,k]) <= uv[r])
 && (tpw[k]+pw[r,c]- pw(r,x[r,k]) <= aw[k]))
 mindiff = abs(pw[r,c]-pw(r,x[r,k]))
 new_selected_combination = c

If (new_selected_combination <> x[r,k])

11th Panhellenic Conference in Informatics 586

x[r,k] = new_selected_combination;
 repair_action = true
 decrement(k)
EndWhile

Subroutine one_less_pump(x) locates a Reservoir r with overflow problem by
randomly selecting a period rk between the first period and the period that manifested
the problem. The only difference compared with one_more_pump is the if statement
condition that is presented below:

(pw[r,c]<pw(r,x[r,k])) && (abs(pw[r,c]-pw(r,x[r,k]))< mindiff)
 && (v[r,k]+pw[r,c]pw(r,x[r,k])<=lv[r,k])

3.2. Integer Programming Solver
Another implemented solution strategy was to solve the scheduling problem using
mixed integer linear programming. The problem was formulated to include a number
of linear constraints and an objective function. The decision variables xit represents
the active combination of water pumps for each reservoir and period. Model
constraints were easily mapped to the underline solvers. The only problem we
encountered was that the introduction of constraint (9), referring to the differential
increase of the requested power in consecutive time periods, created problem
instances that were quadratic in nature and as a consequence the solution time was not
acceptable. Therefore, we relaxed the formulation of the problem by removing this
constraint To formulate and solve the problem, we used the commercial integer
modeling platform ILOG CPLEX 9.1[http://www.ilog.com/products/cplex/] as the
optimization engine through ILOG Concert Technology. Moreover, we experimented
with the open source mathematical programming platform GLPK
[http://www.gnu.org/software/glpk/]. Although, mathematical programming can
provide a proven optimal solution, for our application this was not a requirement, as
the goal was to provide good quality solutions in a timely manner. We selected to
provide the user with the option of selecting three stopping criteria. The first one was
that difference between the current solution and the lower bound was below a user
defined threshold. The second criteria, was the time spend in the solution process.
The final one was the differential progress in the objective value per number of
processed nodes in the branch and bound tree. The user can create any combination of
stopping criteria, which are OR enforced.

3.3. Genetic Algorithms Solver
The final implemented solution strategy was to solve the scheduling problem by using
Genetic Algorithms (GA) as the solver engine [Goldberg (1998)]. GAs use techniques
inspired by evolutionary biology such as inheritance, mutation, natural selection, and
recombination (or crossover). GAs require the definition of solution instances as

Algorithms and Complexity 587

chromosomes. A chromosome consists of genes. Every gene of the chromosome
corresponds to a reservoir and period combination and its value (allele) is the number
of the active pump combination in the reservoir for the specific period. A population
of chromosomes is initially constructed. With higher probability better solutions are
combined to give a new population of the same size which will be the next
generation. If by combining two solutions the new one is infeasible then a repair
phase happens. The repair phase may lead to an accepted feasible solution or to a
rejected still infeasible solution. The evolution happens for a number of generations
and finally the best solution of the last generation is presented to the user. More
information about the Genetic Algorithm Solver can be found at [Gogos et. Al.
(2005)]. A fitness function is formulated giving low values for good solutions, higher
values for less good solutions and MAXDOUBLE for infeasible solutions. The fitness
of each chromosome is computed by aggregating the three factors that has been
analyzed in the objective function (10). Every chromosome gets a fitness value. The
same repair procedure that was described in paragraph Repair Algorithm of (3.1) is
used. To implement the solution we used the open source package
JGAP[http://jgap.sourceforge.net/] which is a java genetic algorithm package. JGAP
provides basic genetic mechanisms that can be used to apply evolutionary principles
in order to achieve high quality solutions to a wide range of problems. Various
parameters of the genetic algorithm like population size, number of generations,
mutation probability, elitism etc had to be tuned in order to get acceptable results.

4. System Design & Implementation
One of our requirements was that a family of interchangeable algorithms could be
implemented and made available for use. Moreover, from a software engineering
point of view, we would like to create interchangeable components for
communicating with data sources, data acquisition mechanisms and reporting tools
that could be implemented independently and integrated based on the requirements of
the end user. Our approach was to create a generic solution model that could integrate
different solution strategies and incorporate different solver engines. In our effort, we
used the principles of Strategy and Model View Control design patterns. Strategy lets
the algorithm vary independently from the clients that use it. Model View Control
separate data handling and presentation from requests for calculations. Our
implementation, fulfills our requirement and provides us with the means to easily
create various usage scenarios, combine or compare different algorithms, create
various reports and compare problem solution properties like quality, feasibility and
robustness.

11th Panhellenic Conference in Informatics 588

5. Comparative study
A sample model instance with 2 reservoirs each with 3 pumps each was solved using
all three of the available solvers. Night periods were specified to be 0-13 and 46,47
while peak periods were 21-26 and 36-41. Each solver found a feasible solution for a
48 period schedule time and calculated the electricity cost due to power demand
projecting the results of the scheduling period to a full month which is the typical
time between electricity payments. The results of executing the algorithms are
summarized in table 2.

Table 2. Results

Solver ZAX ZHM Discount Estimated Cost
Heuristic 396 407 1,35% 3.687 €
Integer Programming 285 400 14,38% 3.145 €
Genetic Algorithms 210 407 24,20% 2.833 €

The integer programming solver used a threshold of 1.5% for reaching the optimal
solution to the relaxed linear problem and needed about 1 minute to find an integer
solution within that range. The genetic algorithms solver used a population of 300
solutions that was evolved for 3000 generations. The best solution of each generation
was preserved(elitism) and the mutation probability was 0.1%. Solution time was less
than 5 minutes. A graphical representation of the aggregated power demand per
period for the Genetic Algorithms Solver can be seen in Figure 3. Genetic algorithm
solver gave the best results but that happened only after fine tuning factors that were
included in the fitness function and giving more than 60% weight to the factor that
refers to the maximum demand avoidance.

Figure 2. Available Water vs Aggregated Pumped Water

Figure 3. Genetic Algorithms Solver

Algorithms and Complexity 589

6. Conclusions
In this paper, an application that solves the problem of activating and deactivating
pumps in a set of related reservoirs was presented. We demonstrated that significant
cost reductions can be achieved without changing existing pumps and reservoirs
configuration. Our system suggests a program that cuts energy peaks and promotes
operation during the night hours resulting to cost savings. It is easy to use, fairly fast
and can be applied to a number of different configurations. As a future improvement
we are planning to use the IP solver in a hybrid approach as a chromosome repairing
mechanism which tries to minimize the number of pump switching while repairing.

References

Baran B., Lucken C., Sotelo A. 2005, Multi-objective pump scheduling optimization
using evolutionary strategies, Advances in Engineering Software, Elsevier, Vol.
36, pp 39-47.

Biscos C., Mulholland M., Lann M., Buckley C., Brouckaert C. 2003. Optimal
Operation of Water Distribution Networks by Predictive Control using MINLP,
Water SA, Vol. 29 No.4.

Coello C. 2000, An updated survey of GA-Based Multiobjective Optimization
Techniques, ACM Computing Surveys, Vol. 32, No. 2.

Goldberg D 1989. Genetic Algorithms in Search, Optimization and Machine
Learning, Addison Wesley.

Gogos C., Alefragis P., Housos E. 2005, Public Enterprise Water Pump Scheduling
System, IEEE ETFA05, Conference Publication.

Kelner V., Leonard O. 2003, Optimal Pump Scheduling for Water Supply Using
Genetic Algorithms, Eurogen.

Mackle G., Savic D., Walters G. 1995, Application of Genetic Algorithms to Pump
Scheduling for Water Supply, GALESIA '95, Conference Publication 4/4, pp 400-
405.

Ormsbee L., Lansey K. 1994, Optimal Control of Water Supply Pumping Systems,
Journal of Water Resource Planning and Management, 120(2).

Savic D., Walters G., Schwab M. 1997, Multiobjective Genetic Algorithms for Pump
Scheduling in Water Supply. Lecture Notes In Computer Science; Vol. 1305, pp
227-236.

	1. Introduction
	2. Pump Scheduling Problem
	2.1. Electricity Charge Model
	2.2. Mathematical representation
	3. Solution methodology
	3.1. Heuristic Solver
	Repair algorithm

	3.2. Integer Programming Solver
	3.3. Genetic Algorithms Solver

	4. System Design & Implementation
	5. Comparative study
	6. Conclusions

