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Abstract 

In this paper the problem of minimizing the electricity cost required by a water storage and 
disposal system is analyzed. Three solution approaches are presented focused in the way that 
various pumps will be scheduled to operate and satisfy prospected water demand while at the 
same time respect availability of water and reservoirs capacity. The first solution uses a 
heuristic approach closely related to the way a human operator might have used to solve the 
problem. The second solution uses mathematical programming, formulates the problem as an 
Integer Programming problem and solve it by using a Branch and Bound commercial solver. 
Finally the third solution uses Genetic Algorithms and defines a fitness function describing the 
attractiveness of each solution for a set of solutions and through a number  of evolution steps 
creates a population with desirable characteristics. A comparative study of the three 
approaches is presented. The actual formulas that compute the electricity cost is used for the 
comparisons. Those formulas state the fact that demand peaks especially during high demand 
periods result in high electricity cost. Data used in our experiments were provided by the 
municipal enterprise of water supplies and sewage of Chania (Crete).  
 
Keywords: heuristics, genetic algorithms, integer programming, pump scheduling, water 
reservoir management, optimization. 

1. Introduction 
Water is said to be one of the most valuable assets for the 21st century. Availability of 
high quality drinking water without interruptions is considered to be  a measure of 
achievement for societies. Many cities are served for their water needs by water 
resources that are not always in abundance and this situation is expected to be worse 
in the future. Usually a group of water customers are served by water pipes that form 
networks which are directly or indirectly connected to a reservoir. A reservoir 
concentrates water to serve demand and this is usually done by operating electrical 
pumps. The planning of the pumping intervals for each pump in order to reduce the 
cost of the electricity consumed while maintaining certain level for the water storage 



11th Panhellenic Conference in Informatics 580 

reservoirs is a challenging exercise for every water department. This stems from the 
fact that the energy company pricing policy promotes the balanced use of energy 
throughout the day. A number of different approaches have been used in various 
situations describing similar problems. In [Ormsbee, Lansey (1994)] a number of 
linear and nonlinear models for the pump scheduling problem are presented and 
solved. The use of a genetic algorithm for a similar problem is described in [Mackle 
et. Al. (1995)]. [Savic  et. Al. (1997)] introduces the concept of additionally 
examining wearing of the pumps because of an extended number of activations and 
deactivations resulting in a model of a multiobjective optimization problem. The use 
of a mixed integer nonlinear programming formulation is presented  in [Biscos et. Al 
(2003)] while [Kelner et.Al. (2003)] uses genetic algorithms for optimal pump 
scheduling in water supply. Finally [Baran et. Al. (2005)]  models water distribution 
and pump scheduling as multiobjective optimization problems. In section 2 the pump 
scheduling problem is presented, the electricity charge model is analyzed and a 
mathematical description of the problem is given. The solution methodology of the 
heuristic approach is presented in section 3 followed by description of solution 
methodologies for the mathematical programming approach and the genetic algorithm 
approach. In section 4 software design issues of the system and libraries and 
frameworks that were used are examined. In section 5  the solution methodologies are 
compared. Finally conclusions and future work are presented.  

2. Pump Scheduling Problem 
The problem that has been modeled involves the creation of an operation schedule for 
a duration of N periods for a system consisting of a number of reservoirs each having 
a number of pumps with different characteristics. Typical values for N and period 
length are 48 and 30 minutes respectively. A profile exists about the available water 
per period which is comprised by forecasted values. All pumps are provided with 
water from the same resource so pump operation should be organized so as to avoid 
request of water in cases where the available water volume has already been drained  
by other pumps operating in parallel. Each reservoir with its associated pumps serves 
a number of water customers and a profile about the prospected water demand per 
period is known to the system. Every reservoir has a specified capacity volume 
imposed by its construction characteristics. Additionally lower level values for each 
period define the desired lower water level for each reservoir and often implement 
various policy and security issues and concerns. These limits represent the 
accumulated knowledge with respect to the time of the day and the season of the year. 
Finally initial water volume and desirable water volume  at the end of the complete 
planning period for each reservoir is specified. The schedule will specify whether 
each pump will be operating or not during each period of the time horizon. The 
effective pumped water and the electricity used when a specific combination of 
pumps are utilized for a given time period, is situation specific and their values are 
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experimentally estimated. In Table 1 a sample of actual values used for experiments 
are presented. It is worth noticing that the model is non linear and simultaneous 
operation of pumps decrease the volume of water that each pump can contribute to 
the reservoir. 

Table 1. Pumped water – electricity demand 

Reservoir 1 [3 pumps] 
Pump Combination 

Pump1 Pump2 Pump3 
Water 
inflow  

(m3/hour) 

Power 
demand 
(KW) 

OFF OFF OFF 0 0 
ON OFF OFF 300 120 

OFF ON OFF 500 210 
OFF OFF ON 550 240 
ON ON OFF 700 285 
ON OFF ON 750 295 

OFF ON ON 900 325 
ON ON ON 1000 340 

2.1. Electricity Charge Model 
The electricity pricing model promotes the use of electricity during certain periods of 
the day (night zone) and discourages high demand during certain other periods (peak 
zone). ZAX is the maximum value of the requested power demand during peak zone 
intervals, ZNYK is the is the maximum value of the requested power demand during 
night zone intervals and ZHM is the maximum value of the requested power demand 
during non peak or night zone intervals. 

KMZ is the maximum value between ZAX and ZHM and di is a discount factor 
computed by the following formula.  

         di = 50.0 – 50.0 * ZAX / ZHM                                        (1) 

Finally ϕ is the angle between the active and reactive requested power for the 
location. XZ is the chargeable demand and can be computed from the following 
formula. 
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In Figure 1 the effect of increasing requested demand during peak hours is depicted. 
Cost increases in a piecewise linear function with greater slope for values of ZAX 
greater than the maximum value between ZHM and ZNYK. 

Cost (Non Peak Hours Demand = 200kW)

4000

4100

4200

4300

4400

4500

4600

4700

4800

4900

130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

Requested Demand during peak hours 

Euro

 
Figure 1. Effect of increasing ZAX 

2.2. Mathematical representation 
The mathematical representation of the problem is as follows. Let ri∈R be the 
individual reservoirs, tj∈T be the time units and xij∈X be the pump combination 
number active in reservoir ri at time period tj. The number of feasible pump 
combinations is installation specific. Let AWj∈A be the available water for all 
functional units in time unit tj, IVi∈I be the initial volume of water at the beginning of 
the scheduling period at reservoir ri, UVi∈U be the maximum volume of water at 
reservoir ri and EVi∈E be the lowest acceptable volume of water at the end of the 
scheduling period at reservoir ri. Also, let LVij∈L be the lowest acceptable volume of 
water at time period tj for reservoir ri, Dij∈D be the forecasted water demand for time 
period tj and for reservoir ri, Wik∈W be the consumed electricity of reservoir ri when 
pump combination k is used, PWik∈P be the pumped volume of water of reservoir ri 
when pump combination k is used and Vij∈V be the actual volume of water at the end 
of time period rj at reservoir ri. It can easily be observed that  

1

1
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The model must follow a set of constraints.  

Maximum and minimum volume limit constraints 

, :1... , :1...ij ij iLV V UV i n j m≤ ≤       (4) 
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Lowest Acceptable water volume at the end of the scheduling period 

, :1...ij iV EV i≥ n

.

    (5) 

Maximum allowable pumped water 
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For the solution methodology of this paper, a cost/fitness function that takes into 
account three factors which measure the cost and applicability of the proposed 
solution is used. These factors are: 

1. Requested Demand (RD), which sums the requested power 

2. Spike Demand (SD), which counts the difference in the requested 
power in consecutive periods  

3. Maximum Demand Avoidance (MDA), which measures the 
difference in the requested power from the maximum 

For every time unit t, the corresponding RDt is calculated as the sum of the requested 
power of all the pumping functional units that where operational during a specific 
time unit.  

1
,

n

t ik it
i

RD W x k
=

= =∑                (7) 

The RD is the weighted sum of all RDt. The weight multipliers ct are user defined and 
during the night hours ct ∈ [0, 0.5], while during peak hours ct ∈ [2, 5]. Thus 

, :1...t t
t

RD c RD t m= ∑                        (8) 

SD sums the increase of the requested power in consecutive time periods.  

1 1max(0, ), :1...t t t t
t

SD c RD c RD t m+ += −∑        (9) 

It should be noted that it is desirable to minimize SD because a large difference in the 
demand of two consecutive periods, creates demand spikes and thus significantly 
bigger values for MRD. Moreover, it is desirable that the pumps usage pattern is 
smooth in order to maintain medium to high reservoir levels, thus creating a robust 
water availability state. Medium to high water availability will also benefit future 
power consumption, as in the case of high water demand, the available water will act 
as a buffer and fewer pumps will start operating concurrently in order to maintain the 
water level in the reservoir.  
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MDA counts the difference of MRD and the theoretical maximum requested demand 
MRDmax. MRDmax can be calculated as the requested demand when all pumps are 
operated concurrently.  

maxMDA MRD MRD= −       (10) 

The fitness objective function calculates the weighted sum of the three factors. 

1 2 3min( ), 1iO c RD c SD c MDA c= + + =∑     (11) 

3. Solution methodology 
The user has the option to select any of the three solvers to generate an initial solution 
or improve upon the current solution. The user selects or creates new profiles about 
demand per reservoir per period, availability of water per period and desirable lower 
volume per reservoir per period. Initial volume and desirable final volume per 
reservoir and night and peak periods can be selected or altered. 

3.1. Heuristic Solver 
The heuristic solver implements a simple strategy which tries to rearrange operational 
pump configurations from high demand periods to night periods. In this strategy, for 
every water reservoir and for every time period, it selects the pump combination that 
can provide the water volume which approaches the volume of water for the same 
period that is forecasted to be the demand.  

forall (r in reservoir)  
for all (t in periods) 

min=MAXDOUBLE 
x[r,t] = null   
forall(c in comb[r]) 
     if (abs(demand[t] – pw[r,c]) < min) 

min = abs(demand[t] – pw[r,c]) 
x[r,t] = c    

if(!feasible(x)) 
repair(x) 

This strategy provides feasible solutions most of the time by maintaining a nearly 
constant water level and emulates the strategy that has been used in the past by the 
users.  

Repair algorithm 

In case that a constraint is violated the following algorithm is used to repair the 
solution. Symbol x[r,t] refers to the selected combination per reservoir r per period t. 
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tries=0; 
While (!repaired(x)) and (tries <= ACCEPTABLE_NR_OF_REPAIRS ) 
 If (underflow(x)) 
  Try firstly in night zone, secondly in    
  normal zone and finally in peak zone  
  one_more_pump(x) 

Else if (overflow(x)) 
  Try firstly in peak zone, secondly in    
  normal zone and finally in night zone  

one_less_pump(x) 
Else if (request_more_than_available_water(x)) 

Randomly choose a Reservoir r 
locate period t with problem  

 x[r, t]=0 
increment(tries) 

EndWhile 
If (repaired(x)) 

Accept solution 
Else 

Reject solution 

When a lower level constraint is violated the algorithm activates a combination of 
pumps in the offending reservoir. It selects the combination that more closely 
resembles the previously active combination. A nice feature of  the repair algorithm is 
that while trying to deactivate pumps it does so by giving priority to peak hours while 
in the other hand in trying to activate new pumps it prefers night hours. Subroutine  
one_more_pump(x) locates a Reservoir r with underflow problem by randomly 
selecting a period rk between the first period and the period that manifested the 
problem. In the subroutine’s code symbol aw[t] refers to the available volume of 
water per period t, d[r,t], lv[r,t], pw[r,t] and  v[r,t ]  are respectively the demand,  the 
lower volume, the pumped water and the volume per reservoir r per period t. Finally 
symbol tpw[t] refers to the totally pumped water per period t and uv[r] is the upper 
volume per reservoir r.  

repair_action = false 
k = rk 
While (repair_action == false) && (k >=1) 
   mindiff = MAXDOUBLE 
   forall(c in comb[r]) 
      If ((pw[r,c]>pw(r, x[r,k])) 
        && (abs(pw[r,c]- pw(r,x[r,k])) < mindiff) 
        && (v[r,k]+ pw[r,c] - pw(r,x[r,k]) <= uv[r]) 
        && (tpw[k]+pw[r,c]- pw(r,x[r,k]) <= aw[k])) 
     mindiff = abs(pw[r,c]-pw(r,x[r,k])) 
     new_selected_combination = c 

If (new_selected_combination <> x[r,k]) 
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x[r,k] = new_selected_combination;  
      repair_action = true 
   decrement(k) 
EndWhile 

Subroutine one_less_pump(x) locates a Reservoir r with overflow problem by 
randomly selecting a period rk between the first period and the period that manifested 
the problem. The only difference compared with  one_more_pump is the if statement 
condition that is presented below: 

(pw[r,c]<pw(r,x[r,k])) && (abs(pw[r,c]-pw(r,x[r,k]))< mindiff)  
    &&  (v[r,k]+pw[r,c]pw(r,x[r,k])<=lv[r,k]) 

3.2. Integer Programming Solver 
Another implemented solution strategy was to solve the scheduling problem using 
mixed integer linear programming. The problem was formulated to include a number 
of linear constraints and an objective function. The decision variables xit represents 
the active combination of water pumps for each reservoir and period. Model 
constraints were easily mapped to the underline solvers. The only problem we 
encountered was that the introduction of constraint (9), referring to the differential 
increase of the requested power in consecutive time periods, created problem 
instances that were quadratic in nature and as a consequence the solution time was not 
acceptable. Therefore, we relaxed the formulation of the problem by removing this 
constraint To formulate and solve the problem, we used the commercial integer 
modeling platform ILOG CPLEX 9.1[http://www.ilog.com/products/cplex/] as the 
optimization engine through ILOG Concert Technology. Moreover, we experimented 
with the open source mathematical programming platform GLPK 
[http://www.gnu.org/software/glpk/]. Although, mathematical programming can 
provide a proven optimal solution, for our application this was not a requirement, as 
the goal was to provide good quality solutions in a timely manner. We selected to 
provide the user with the option of selecting three stopping criteria. The first one was 
that difference between the current solution and the lower bound was below a user 
defined threshold. The second criteria, was the time spend in the solution process. 
The final one was the differential progress in the objective value per number of 
processed nodes in the branch and bound tree. The user can create any combination of 
stopping criteria, which are OR enforced. 

3.3. Genetic Algorithms Solver 
The final implemented solution strategy was to solve the scheduling problem by using 
Genetic Algorithms (GA) as the solver engine [Goldberg (1998)]. GAs use techniques 
inspired by evolutionary biology such as inheritance, mutation, natural selection, and 
recombination (or crossover). GAs require the definition of solution instances as 
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chromosomes. A chromosome consists of genes. Every gene of the chromosome 
corresponds to a reservoir and period combination and its value (allele) is the number 
of the active pump combination in the reservoir for the specific period. A population 
of chromosomes is initially constructed. With higher probability better solutions are 
combined to give a new population of the same size which will be the next 
generation.  If by combining two solutions the new one is infeasible then a repair 
phase happens. The repair phase may lead to an accepted feasible solution or to a 
rejected still infeasible solution. The evolution happens for a number of generations 
and finally the best solution of the last generation is presented to the user. More 
information about the Genetic Algorithm Solver can be found at [Gogos et. Al. 
(2005)]. A fitness function is formulated giving low values for good solutions, higher 
values for less good solutions and MAXDOUBLE for infeasible solutions. The fitness 
of each chromosome is computed by aggregating the three factors that has been 
analyzed in the objective function (10). Every chromosome gets a fitness value.  The 
same repair procedure that was described in paragraph Repair Algorithm of (3.1) is 
used. To implement the solution we used the open source package 
JGAP[http://jgap.sourceforge.net/] which is a java genetic algorithm package. JGAP 
provides basic genetic mechanisms that can be used to apply evolutionary principles 
in order to achieve high quality solutions to a wide range of problems. Various 
parameters of the genetic algorithm like population size, number of generations, 
mutation probability, elitism etc had to be tuned in order to get acceptable results. 

4. System Design & Implementation 
One of our requirements was that a family of interchangeable algorithms could be 
implemented and made available for use. Moreover, from a software engineering 
point of view, we would like to create interchangeable components for 
communicating with data sources, data acquisition mechanisms and reporting tools 
that could be implemented independently and integrated based on the requirements of 
the end user. Our approach was to create a generic solution model that could integrate 
different solution strategies and incorporate different solver engines. In our effort, we 
used the principles of Strategy and Model View Control design patterns. Strategy lets 
the algorithm vary independently from the clients that use it. Model View Control 
separate data handling and presentation from requests for calculations.  Our 
implementation, fulfills our requirement and provides us with the means to easily 
create various usage scenarios, combine or compare different algorithms, create 
various reports and compare problem solution properties like quality, feasibility and 
robustness. 
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5. Comparative study 
A sample model instance with 2 reservoirs each with 3 pumps each was solved using 
all three of the available solvers. Night periods were specified to be 0-13 and 46,47 
while peak periods were 21-26 and 36-41. Each solver found a feasible solution for a 
48 period schedule time and calculated the electricity cost due to power demand 
projecting the results of the scheduling period to a full month which is the typical 
time between electricity payments. The results of executing the algorithms are 
summarized in table 2. 

Table 2. Results  

Solver ZAX ZHM Discount Estimated Cost 
Heuristic 396 407 1,35% 3.687 € 
Integer Programming 285 400 14,38% 3.145 € 
Genetic Algorithms 210 407 24,20% 2.833 € 

 
The integer programming solver used a threshold of 1.5% for reaching the optimal 
solution to the relaxed linear problem and needed about 1 minute to find an integer 
solution within that range. The genetic algorithms solver used a population of 300 
solutions that was evolved for 3000 generations. The best solution of each generation 
was preserved(elitism) and the mutation probability was 0.1%. Solution time was less 
than 5 minutes. A graphical representation of the aggregated power demand per 
period for the Genetic Algorithms Solver can be seen in Figure 3. Genetic algorithm 
solver gave the best results but that happened only after fine tuning factors that were 
included in the fitness function and giving more than 60% weight to the factor that 
refers to the maximum demand avoidance.  

 
Figure 2. Available Water vs Aggregated Pumped Water 

 
Figure 3. Genetic Algorithms Solver 
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6. Conclusions 
In this paper, an application that solves the problem of activating and deactivating 
pumps in a set of related reservoirs was presented. We demonstrated that significant 
cost reductions can be achieved without changing existing pumps and reservoirs 
configuration. Our system suggests a program that cuts energy peaks and promotes 
operation during the night hours resulting to cost savings. It is easy to use, fairly fast 
and can be applied to a number of different configurations. As a future improvement 
we are planning to use the IP solver in a hybrid approach as a chromosome repairing 
mechanism which tries to minimize the number of pump switching while repairing. 
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