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Abstract 
We investigate algorithms for a frequency assignment problem in cellular networks. The 
problem can be modeled as a special coloring problem for graphs. Base stations are the 
vertices, ranges are the paths in the graph, and colors (frequencies) must be assigned to 
vertices following the conflict-free property: In every path there is a color that occurs exactly 
once. We concentrate on the special case where the base stations lie on a chain and ranges are 
the non-empty subchains. We also consider other simple graphs, such as rings, trees, and 
grids. We discuss a whole hierarchy of related coloring problems.  
 
This work was supported by the European Social Fund (75%) and National Resources (25%) 
under the program EPEAEK II, `Heraclitus'. 

1. Introduction 
A vertex coloring of a graph G = (V, E) is an assignment C: V → N of colors to its 
vertices such that for every edge the colors of its two vertices are different. A 
hypergraph H = (V, E) is a generalization of a graph for which hyperedges can be 
arbitrary-sized non-empty subsets of V. There are several ways to define vertex 
coloring in hypergraphs: On one extreme, it is required that for every hyperedge, not 
all colors are the same (there are at least two colors); on the other extreme, it is 
required that for every edge, no color is repeated (all the colors are different). In 
between these two extremes, there is another possible generalization: A vertex 
coloring C of hypergraph H is called conflict-free if in every hyperedge there is a 
vertex whose color is unique among all other colors in the hyperedge. 

Conflict-free coloring models frequency assignment for cellular networks. A cellular 
network consists of two kinds of nodes: base stations and mobile agents. Base stations 
have fixed positions and provide the backbone of the network; they are modeled by 
vertices in V. Mobile agents are the clients of the network and they are served by base 
stations. This is done as follows: Every base station has a fixed frequency; this is 
modeled by the coloring C, i.e., colors represent frequencies. If an agent wants to 
establish a link with a base station it has to tune itself to this base station's frequency. 
Since agents are mobile, they can be in the range of many different base stations. The 
range of communication of every agent is modeled by a hyperedge, which is the set of 
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base stations that can communicate with the agent. To avoid interference, the system 
must assign frequencies to base stations in the following way: For any range, there 
must be a base station in the range with a frequency that is not reused by some other 
base station in the range. This is modeled by the conflict-free property. One can solve 
the problem by assigning n different frequencies to the n base stations. However, 
using many frequencies is expensive, and therefore, a scheme that reuses frequencies, 
where possible, is preferable. 

The study of conflict-free colorings was originated in the work of Even et al. (2003) 
and Smorodinsky (2003). In addition to the practical motivation described above, this 
new coloring model has drawn much attention of researchers through its own 
theoretical interest and such colorings have been the focus of several recent papers 
(see references). 

Fiat et al. (2005) considered the special case of the problem where the hypergraph is 
defined as follows: Vertices are identified by points that lie on a line and E consists of 
all subsets of V defined by intervals intersecting at least one vertex. A line with n 
points has n(n+1)/2 such subsets. We call these subsets intervals because for our 
problem, two intervals are equivalent if they contain the same vertices. We represent 
colorings by listing the colors of points from left to right in a string. For example, for 
n=5, 12312 is a conflict-free coloring, whereas 12123 is not. 

Conflict-free coloring for intervals is important because it can model assignment of 
frequencies in networks where the agents' movement is approximately 
unidimensional, e.g., the cellular network that covers a single long road and has to 
serve agents that move along this road. Also, conflict-free coloring for intervals plays 
a role in conflict-free coloring for more complicated range spaces;  Even et al. (2003). 

The problem becomes more interesting when the vertices are given online by an 
adversary. Namely, at every given time step t, a new vertex vt is given and the 
algorithm must assign vt a color such that the coloring is a conflict-free coloring of the 
hypergraph that is induced by the vertices Vt = {v1,…, vt}. Once vt is assigned a color, 
that color cannot be changed in the future. This is an online setting, so the algorithm 
has no knowledge of how vertices will be given in the future. For this version of the 
problem, in the case of intervals, Fiat et al. (2005) provide several algorithms. Their 
randomized algorithm uses O(lognloglogn) colors with high probability. Their 
deterministic algorithm uses O(log2n) colors in the worst case. Recently, randomized 
algorithms that use O(logn) colors have been found [Chen (2006), Bar-Noy et al. 
(2006c)], in the oblivious adversary online model. 

For conflict-free coloring of n points with respect to (closed) disks, Pach and Toth 
prove a lower bound of Ω(logn) colors. They also generalize the result to homothetic 
copies of any convex body. Har-Peled and Smorodinsky (2005), for conflict-free 
coloring of points with respect to axis-parallel rectangles, give an efficient coloring. 
Pach and Toth (2003) improve on the above result. 
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Alon and Smorodinsky (2006) consider coloring a collection of n disks in which each 
disk intersects at most k others such that for each point p in the union of all disks 
there is at least one disk in the collection containing p whose color differs from that of 
all other member of the collection that contain p (this is the dual problem of coloring 
points with respect to ranges). The proof uses the probabilistic method, and especially 
the Lovasz Local Lemma. 

Smorodinsky (2006) studies `traditional' coloring of hypergraphs that are induced by 
simple Jordan curves. He applies the above results to conflict-free coloring of regions 
with near linear union complexity (using a polylogarithmic number of colors), and 
axis-parallel rectangles (using O(log2n) colors). 

Elbassioni and Mustafa (2006) consider an interesting variation of the problem of 
conflict-free coloring points with respect to axis-parallel rectangles: They prove that 
given any set of n points on the plane, one can add sublinearly many new points, so 
that all points can be conflict-free colored efficiently. 

2. Conflict-free coloring 
Given is a graph G, with vertex set V(G) and edge set E(G). The aim is to color the 
vertices of the graph such that for each path p in the graph, there is a vertex v in p 
whose color is not used by any other vertex in p. This is called a conflict-free coloring 
(CF coloring) of graph G with respect to paths. It is a minimization problem, i.e., the 
goal is to find such a coloring that uses as few colors as possible.  

Definition 1. The conflict-free chromatic number of a graph G, denoted by χcf(G), is 
the minimum k for which  has a k-CF-coloring (a coloring with k colors).  

Since the above coloring involves sets of vertices included in a path, one can ask the 
same question in terms of hypergraphs. A hypergraph H is a generalization of a graph 
for which hyperedges can be arbitrary-sized non-empty subsets of V. 

Definition 2. A vertex coloring C of hypergraph H is called conflict-free if in every 
hyperedge there is a vertex whose color is unique among all other colors in the 
hyperedge. 

Proposition 1. Given a graph G with vertex set  V, define the hypergraph HG with 
vertex set V and a hyperedge for each path p of the graph containing all vertices of p. 
Then, a conflict-free coloring of graph G with respect to paths is a conflict-free 
coloring of HG and vice versa. 
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3. Relation with other problems 

3.1 Ordered coloring 
A closely related problem is ordered coloring [Katschalski et al. (1995)] or vertex 
ranking [Iyer et al. (1988)]. Ordered coloring is like conflict-free coloring, but we 
have the following additional constraint: the unique color in a path must also be the 
maximum color in the path. Formally, we define: 

Definition 3. A unique maximum CF coloring is a CF coloring in which the 
maximum color in every path p is also a unique color in path p. 

We remark that the definition given above is not what is typical in the bibliography 
[Katchalski et al. (1995)]. Instead the following definition is more typical: 

Definition 4. An ordered k-coloring of a graph  is a function C: V→{1,…,k} such 
that for every pair of distinct vertices v, v’, and every path p from v to v’, if 
C(v)=C(v’), there is an internal vertex v’’ of p such that C(v)<C(v’’). The ordered 
chromatic number of a graph G, denoted by χo(G), is the minimum k for which G has 
an ordered k-coloring.. 

We prove that the two definitions are equivalent: 

Proposition 2. C is a unique maximum CF coloring if and only if C is an ordered 
coloring. 

Proof. If C is a unique maximum CF-coloring, then for any two same color vertices v, 
v’, every (v,v’)-path  has a unique maximum color, greater than C(v), which appears 
in some internal vertex of p. If C is an ordered coloring, then consider any path p in 
G. The maximum color in p has to occur exactly in one vertex. If it occurs in two 
vertices v, v’ of p then there is a (v,v’)-path contained in p which has an internal 
vertex with a greater color; a contradiction to the maximality of C(v) in p. 

Corollary 1. Every ordered coloring is also a CF-coloring and thus χcf(G) ≤ χo(G). 

In ordered colorings an even stronger property is true: 

Proposition 3. In any ordered coloring C of G, in every connected subset S of 
vertices of G, the maximum color appearing in S is unique in S. 

Proof. By contradiction; if there are two different vertices x, y in S with the maximum 
color, then there is a (x,y)-path in S, for which there is no internal vertex with higher 
color. 

Proposition 4. (Monotonicity under subgraphs) If X ⊆ Y, then χo(X) ≤ χo(Y). 

Proof. Graph X contains a subset of the paths of Y, so the restriction of an optimal 
coloring of V(Y) to V(X) is a CF-coloring for X. 
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3.2 Squarefree colorings 
Another related problem is obtained by looking at colorings of paths as strings. We 
impose the following restriction: Every coloring of a path, when viewed as a string, 
shall not contain a repetition. Formally, a string w of natural numbers (colors) is 
called squarefree if there is no substring of w of the form x2=xx, where x is a 
nonempty string. Given a coloring C of the vertices of a graph, for every path 
p=v1…vl, we define the color string of p to be C(v1)…C(vl). 

Definition 5. A coloring C is a squarefree k-coloring if for every path in the graph its 
color string is squarefree. 

Corollary 2. Every CF-coloring is squarefree and thus χsf(G) ≤ χcf(G). 

We have the following relation between colorings: 

C ← SF ← CF ← OC 

where C is the class of `traditional' vertex coloring of graphs. 

The above is a proper hierarchy as can be exhibited by the following colorings of the 
chain P6: 

121212  traditional but not squarefree 

123132   squarefree but not conflict-free 

313213   conflict-free but not ordered 

121312   ordered 

In terms of chromatic numbers: 

Proposition 5. χ(G) ≤  χsf(G) ≤ χcf(G) ≤ χo(G). 

The problem of squarefree coloring looks a lot easier than CF coloring and ordered 
coloring: For example, a seminal result by Thue (1906) shows that 3 colors suffice to 
color any chain. More precisely: 

⎩
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As we will see, for chains both ordered coloring and conflict-free coloring need 
Ω(logn) colors. 

Another, more recent result is by Currie (2002), on the squarefree chromatic number 
of rings is the following: 
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As we will see, for rings both ordered coloring and conflict-free coloring need 
Ω(logn) colors. 

3.3 Cubefree colorings 
Another related class of colorings consists of cubefree colorings, where color strings 
of paths can not contain an x3 substring, for x nonempty. It is known from [Thue 
(1906)], but it is also implicit in [Prouhet (1851)], that 2 colors suffice to color any 
chain. Cubefree colorings can also be put in the above hierarchy over squarefree 
colorings but they are not comparable with traditional colorings. 

4. Conflict-free coloring graphs 

We study conflict-free coloring some graphs with respect to all paths. 

4.1 Chain 
Conflict-free coloring of a chain is better known as conflict-free coloring with respect 
to intervals [Even et al. (2003), Fiat et al. (2005)]. We will prove that it can be done 
with exactly 1+⎣lgn⎦ colors. This will also be an ordered coloring. Because of its 
symmetry, we call it a recursively palindromic coloring. A chain containing n points 
is given (points are linearly ordered in the chain). Colors are positive integers. A 
coloring is an assignment of colors to the points of the interval. The coloring is 
represented by an array of positive integers A[1..n], where for each point i, A[i] is the 
assigned color. A conflict-free coloring is an assignment C of colors to the points, 
such that for every subarray (sequence of consecutive elements in the array), there is a 
color that appears exactly once, i.e., for all i, j, with 1≤i≤j≤n, the subarray A[i..j] 
contains a color that appears exactly once in the subarray. Let c(n) be the minimum 
number of colors for conflict-free coloring a chain of n points (vertices). 

A lower bound. In order to find a lower bound for the number of colors needed for n 
points, first, we have to observe that in any conflict-free colored array A[1..n], there is 
a color that appears exactly once. If that color is assigned to point k, then the 
subarrays A[1..k-1] and A[k+1..n] use one less color than the whole interval. We can 
also assume that one of the two subintervals uses only colors that appear in the other 
interval, because any interval that spans points in both [1..k-1] and [k+1..n] will also 
span point k and thus have the color at the k-th entry as its uniquely appearing color. 
If we also consider the non-decreasing nature of the function c(n), we can concentrate 
on the conflict-free coloring of the interval of maximum length among [1..k-1] and 
[k+1..n]. The length of this interval is at least ⎣n/2⎦. Therefore, we have the 
recurrence: 

⎣ ⎦)2/(1)( ncnc +≥     and    1)1( =c . 

 



Algorithms and Complexity 613 

The solution of the above recurrence relation is 

⎣ ⎦nnc lg1)( +≥ . 

A conflict-free coloring that achieves the bound. An offline coloring algorithm that 
achieves this lower bound is given below: 

Starting at point 1, color with color 1 every 2 points 

Starting at point 2, color with color 2 every 4 points 

… 

Starting at point 2i-1, color with color i every 2i points 

… 

and keep doing this until you have colored all points. 

Color i is used only if n ≥ 2i-1, so in fact 1+⎣lgn⎦ colors are used by the algorithm. We 
can describe more easily the coloring produced by the algorithm by using a binary 
tree of n nodes. If n=2k-1, then the tree is full, and it is as follows: The levels of the 
tree are numbered from the bottom, to the top (root). The lowest level is level 1. 
Nodes at level i are labeled with number (color) i. The root is at level 1+⎣lgn⎦, so it 
also has label 1+⎣lgn⎦. The conflict free coloring arises from an inorder traversal of 
the tree. If n≠2k-1, the tree is missing its rightmost nodes and the description with 
levels is not that elegant in all cases. 

Claim 1. For any color i that is repeated in some interval, there is a color i’ in the 
coloring contained in that interval such that i’ > i. 

Proof. In the tree representation of the coloring, consider the node with the maximum 
color i’ in the path (in the tree) connecting the two nodes colored with i. 

Claim 2. The coloring produced by the algorithm is conflict-free. 

Proof. In every interval, the maximum color occurs uniquely. Otherwise, if the 
maximum color is not unique, then (by the previous claim) an even greater color is 
contained in the interval; a contradiction. 

4.2 Ring 
To conflict-free color a ring, we use the above conflict-free coloring of a chain. We 
pick an arbitrary vertex v and color it with a unique color (not to be reused anywhere 
else in the coloring). The remaining vertices form a chain that we color with the 
method described above. This method colors a ring of n vertices with 2+⎣lg(n–1)⎦ 
colors. For example, if n=8, the coloring is 41213121, where `4' is the first unique 
color used for v. It is not difficult to see that the coloring is conflict-free: All paths 
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that include v are conflict-free colored, and the remaining graph G–v is a chain of n–1 
nodes, so paths of G–v are also conflict-free colored. This can be proved to be tight. 

4.3 Tree 
For a tree graph, we use the idea of a 1/2-separator [Jordan (1869), Lewis et al. 
(1965), Erlebach et al. (2003)]. A 1/2-separator is a vertex which, when removed, 
leaves connected components whose size is bounded by n/2. The method to color a 
tree is as follows: Find a 1/2-separator, color it with a unique color. Then color 
recursively the connected components, after the removal of the 1/2-separator. Thus, 
χcf(T) ≤ 1+⎣lgn⎦ for a tree T with n vertices. See also [Katchalski et al. (1995)]. If a 
maximum color is used for every separator, the above is an ordered coloring. 
Moreover, one can find optimal ordered colorings of trees [Iyer et al. (1988)]. 

4.4 Grid 
A grid of size m×m, i.e, with n=m2 vertices can be colored with an ordered coloring 
with at most 4m colors: The idea is to use unique maximum colors for the row closest 
to the middle and column closest to the middle (that is less than 2m colors), and then 
color recursively in the 4 subgrids with size at most ⎣m/2⎦×⎣m/2⎦ each. A slight 
variation gives a coloring with at most 3m colors: Use m unique maximum colors for 
the row closest to the middle, and then use about m/2 more unique colors for the part 
of the middle column over the middle row, and the same m/2 colors for the middle 
column under the middle row; then use recursion in the 4 subgrids with size at most  
⎣m/2⎦×⎣m/2⎦ each. See also [Bar-Noy et al. (2006a), Cheilaris et al. (2006)]. 

5. Related and future research 

One could study the conflict-free coloring problem in an online setting; for relevant 
results, see [Fiat et al. (2005), Bar-Noy et al. (2006b)]. The most important open 
problem in the online setting for chains is narrowing the gap between lower and upper 
bound in the deterministic online model: Ω(logn), and O(log2n), respectively, which 
are a logarithmic factor apart. Better bounds can be obtained for the ordered 
chromatic number of the grid; see [Cheilaris et al. (2007)]. 
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