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Abstract 
More than 1000 years ago Alcuin of York proposed a classical puzzle involving a wolf, a goat 
and a bunch of cabbages that need to be ferried across a river using a boat that only has 
enough room for one of them. In this paper we study several generalizations of this problem, 
called River Crossing problems, involving more items and more complicated 
incompatibilities. Our study is made from an algorithmic point of view, seeking to minimize 
either the boat size needed, or the number of trips. We present hardness and approximation 
results for the case where there is no constraint on the number of trips and the 
incompatibilities between items are given by a general graph. We show that the same problem 
can be solved exactly when the graph is a tree. In addition, we present several results when 
there is a constraint on the number of trips and show how this variation of the problem relates 
to the unconstrained version. 
Keywords: approximation algorithms, graph algorithms, vertex cover, transportation 
problems 

 

1. Introduction 
The first time algorithmic transportation problems appeared in Western literature is 
probably in the form of Alcuin’s four “River Crossing Problems” in the book 
Propositiones ad acuendos iuvenes. Alcuin of York, who lived in the 8th century 
A.D. was one of the leading scholars of his time and a royal advisor in Charlemagne’s 
court. One of Alcuin’s problems was the following:  
A man has to take a wolf, a goat and a bunch of cabbages across a river, but the only 
boat he can find has only enough room for him and one more. How can he safely 
transport everything to the other side, without the wolf eating the goat or the goat 
eating the cabbages?  

This amusing problem is a very good example of a constraint satisfaction problem in 
operations research, and, quite surprisingly for a problem whose solution is trivial, it 
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demonstrates many of the difficulties which are usually met when trying to solve 
much larger and more complicated transportation problems [Borndörfer et. Al. 
(1995)].  

In this paper we study generalizations of Alcuin’s problem which we call River 
Crossing problems. In these problems the goal is to ferry a set of items across a river, 
while making sure that items that remain unattended on the same bank are safe from 
each other. The relations between items are described by an incompatibility graph, 
and the objective varies from minimizing the size of the boat needed to minimizing 
the number of trips. Our study is made from both an algorithmic and a graph-theoretic 
perspective, and we seek to identify families of graphs where our problems can be 
efficiently solved as well as algorithms that compute exact or approximate solutions.  

There are many reasons which make the study of River Crossing problems interesting 
and worthwhile. First, as they derive from a classic puzzle, they are amusing and 
entertaining, while at the same time having algorithmic depth. This makes them very 
valuable as a teaching tool. Several other applications of these concepts are possible. 
For example in cryptography, the items may represent parts of a key and the 
incompatibilities may indicate parts that could be combined by an adversary to gain 
some information. A player wishes to transfer a key to someone else, without 
allowing him to gain any information before the whole transaction is complete.  

The rest of this paper is structured as follows: basic definitions and preliminary 
notions are given in Section 2. In Section 3 we study the Ferry Cover problem 
without constraints on the number of trips and present hardness and approximation 
results, as well as results for several graph topologies. In Section 4 we analyse the 
Trip Constrained Ferry Cover problem and present several lemmata that relate it to 
the unconstrained version. Section 5 consists of an analysis of the Trip Constrained 
Ferry Cover problem with the maximum number of trips being 3. Finally, conclusions 
and directions to further work are given in Section 6.   

2. Definitions – Preliminaries 
The rules of the River Crossing games can be roughly described as follows: we are 
given a set of n items, some of which are incompatible with each other. These 
incompatibilities are described in the form of a graph with vertices representing items, 
and edges connecting incompatible items. We need to take all n items across a river 
using a boat of fixed capacity k without at any point leaving two incompatible items 
on the same bank when the boat is not there. We seek to minimize the boat size k in 
conjunction with the number of required trips to transfer all items.  

Let us now formally define the River Crossing problems we will focus on. To do this 
we need to define the concept of a legal configuration. Given a graph G(V,E), a legal 
configuration is a triple  ),,,( bVV RL ,VVV RL =∪  },{   ,0 RLbVV RL ∈/=∩ ,  s.t. 
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if b = L  then VR  induces an independent set on G else VL  induces an independent set 
on G. Informally, this means that when the boat is on one bank all items on the 
opposite bank must be compatible. Given a boat capacity k a legal left-to-right trip is 
a pair of legal configurations ((VL1 ,VR1 ,L), (VL2 ,VR2 ,R)) s.t. VL2 ⊆  VL1 and |VL1| - |VL2| 
≤ k. Similarly a right-to-left trip is a pair of legal configurations ((VL1 ,VR1 ,R), (VL2 

,VR2 ,L)) s.t. VR2 ⊆  VR1 and |VR2 | - |VR2 | ≤ k. A ferry plan is a sequence of legal 
configurations starting with (V, 0/ ,L) and ending with ( 0/ , V, R) s.t. successive 
configurations constitute left-to-right or right-to-left trips. 

Definition 1. The Ferry Cover (FC) problem is, given an incompatibility graph G, 
compute the minimum required boat size k s.t. there is a ferry plan for G. 

We will denote by OPTFC(G) the optimal solution to the Ferry Cover problem for a 
graph G. 

We can also define the following interesting variation of FC. 

Definition 2. The Trip Constrained Ferry Cover problem is, given a graph G and an 
integer trip constraint m compute the minimum boat size k s.t. there is a ferry plan for 
G consisting of at most 2m + 2 configurations, i.e. at most 2m + 1 trips.  

We will denote by OPTFCm(G) the optimal solution of Trip Constrained Ferry Cover 
for a graph G given a constraint on trips m.  

For the sake of completeness let us also give the definition of the well-studied Vertex 
Cover and Maximum Independent Set problems.  

Definition 3. The Vertex Cover problem is, given a graph G(V,E) find a minimum 
cardinality subset V’ of V s.t. all edges in E have at least one endpoint in V’.  

Definition 4. The Maximum Independent Set problem is, given a graph G(V,E) find a 
maximum cardinality subset V’ of V s.t. no edge in E has both endpoints in V’.  

We will see that the problems defined below are closely connected to some cases of 
River Crossing problems.  

Definition 5. The Second Vertex Cover problem is, given a graph G(V,E) find an 
optimal vertex cover V’ of G s.t. the subgraph G’(V’,E’) induced by V’ 

 
has minimum 

OPTVC(G’) among all subgraphs induced by optimal vertex covers of G.  

We will denote by OPTSVC(G) the minimum OPTVC(G’) in the previous definition.  

Definition 6. The H-Coloring problem is the following: given a fixed graph H(VH,EH) 
possibly with loops but without multiple edges, we say that an input graph G(VG,EG) 
has an H-Coloring if there exists a homomorphism θ from G to H, i.e. a map θ : VG → 
VH  with the property that (u,v) ∈EG  (θ(u),θ(v)) ⇒ ∈  EH .  
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The above problem was defined in [Hell, Nešetřil (1990)]. 

3. The Ferry Cover Problem 
In this section we present several results for the Ferry Cover problem which indicate 
that it is very closely connected to Vertex Cover. We will show that Ferry Cover is 
NP-hard and that it has a constant factor approximation.  

Lemma 1. For any graph G, OPTVC(G) ≤ OPTFC(G) ≤ OPTVC(G) + 1. 

Proof. For the first inequality note that if we have boat capacity k and OPTVC(G) > k, 
then no trip is possible because any selection of k vertices to be transported on the 
initial trip fails to leave an independent set on the left bank. 

For the second inequality, if we have boat capacity OPTVC(G) + 1 then we can use the 
following ferry plan: load the boat with an optimal vertex cover and keep it on the 
boat for all the trips. Use the extra space to ferry the remaining independent set vertex 
by vertex to the other bank. Unload the vertex cover together with the last vertex of 
the independent set.  

□ 

Theorem 1. There are constants εF , n0 > 0 s.t. there is no (1 + εF )-approximation 
algorithm for Ferry Cover with instance size greater than n0  vertices unless P = NP.  

Proof. It is known that there is a constant εS > 0 such that there is no (1 - εS )-
approximation for MAX−3SAT unless P = NP [Arora et. Al. (1992)] and that there is 
a gap preserving reduction from MAX−3SAT to Vertex Cover. We will show that 
there is also a gap-preserving reduction from MAX−3SAT to Ferry Cover.  

The gap-preserving reduction to Vertex Cover in [Garey, Johnson (1979)] and 
[Vazirani (2001)] implies that there is a constant εV > 0 s.t. for any 3CNF formula φ 
with m clauses we produce a graph G(V,E) s.t. 
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□ 

Corollary 1. Ferry Cover is NP-hard. 

Proof. It follows from Theorem 1 that an algorithm which exactly solves large 
enough instances of Ferry Cover in polynomial time, and therefore achieves an 
approximation ratio better than (1 + εF ), implies that P = NP.  

□ 

It should be noted that the constant εF  in Theorem 1 is much smaller than εV. 
However, this is a consequence of using the smallest possible value for n0. Using 
larger values would lead to a proof of hardness of approximation results 
asymptotically equivalent to those we know for Vertex Cover. This is hardly 
surprising, since Lemma 1 indicates that the two problems have almost equal 
optimum values. Lemma 1 also leads to the following approximation result for Ferry 
Cover.  

Theorem 2. A ρ-approximation algorithm for Vertex Cover implies a (ρ + 1/OPTFC)-
approximation algorithm for Ferry Cover.  

Proof. Consider the following algorithm: use the ρ-approximation algorithm for 
Vertex Cover to obtain a vertex cover of cardinality SOLVC, then set boat capacity 
equal to SOLFC = SOLVC + 1. This provides a feasible solution since loading the boat 
with the approximate vertex cover leaves enough room to transport the remaining 
independent set one by one as in Lemma 1. Observe that SOLFC = SOLVC + 1 ≤ 
ρ·OPTVC + 1 ≤ ρ·OPTFC + 1 (the first inequality from the approximation guarantee 
and the second from Lemma 1).  

□ 

We now present some examples for specific graph topologies.  

Example 1. If G is a clique, i.e. G = Kn, then OPTFC(G) = OPTVC(G) = n - 1.  
Example 2. If G is a ring, i.e. G = Cn then OPTFC(G) = OPTVC(G) = ⎡ ⎤2

n . 
Example 3. Consider a graph G(V,E), |V | ≥  n + 3 s.t. G contains a clique Kn and all 
other vertices form an independent set. In addition every vertex outside the clique is 
connected with every vertex of the clique. For example see Figure 1. 
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We will show that OPTFC(G) = OPTVC(G) + 1. Assume that OPTFC(G) = OPTVC(G). 
The optimal vertex cover of G is the set of vertices of Kn. A ferry plan of G should 
begin by transferring the clique to the opposite bank and then leaving a vertex there. 
On return the only choice is to load a vertex from the independent set, because 
leaving any number of vertices from the clique is impossible. On arrival to the 
destination bank we are forced to unload the vertex from the independent set and 
reload the vertex from the clique. We are now at a deadlock, because none of the 
vertices on the boat can be unloaded on the left bank.  

The graph G described in this example is a generalization of the star, where the centre 
vertex is replaced by a clique. The star is the simplest topology where OPTFC(G) = 
OPTVC(G) + 1. 

 
Figure 1. An example of the graph described in Example 3 

The following theorem, together with the observation of Example 3 about stars, 
completely solve the Ferry Cover problem on trees.  

Theorem 3. If G is a tree and OPTVC(G) ≥ 2 ⇒OPTFC(G) = OPTVC(G).  

Proof. Let v1, v2 be two vertices of an optimal vertex cover of G. Then v1 and v2 have 
at most one common neighbour, because if they had at least two then G would 
contain a cycle. We denote by u the common neighbour of v1 and v2, if such a vertex 
exists. 

Then a ferry plan of G is the following: load the vertex cover in the boat and unload 
v1 in the opposite bank. Then transfer all the neighbours of v2 vertex by vertex, 
leaving vertex u last to be ferried. When u is the only remaining neighbour of v2 on 
the left bank, unload v2 and load u on the boat. On arrival to the destination bank 
unload u and load v1. The remaining vertices of the independent set are now 
transported one by one to the destination bank and finally v2 is loaded on the boat on 
the last trip and transported across together with the rest of the vertex cover.  

□ 

Remark 1. If OPTVC for a tree is 1 then the tree is a star. If the star is a path then 
OPTFC = 1 else OPTFC = 2.  

Corollary 2. The Ferry Cover problem can be solved in polynomial time in trees.  
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Proof. The Vertex Cover problem can be solved in polynomial time in trees. Theorem 
3 and Remark 1 imply that determining OPTVC is equivalent to determining OPTFC. 

4. The Trip Constrained Ferry Cover problem  
Let us now focus on the trip-constrained version of our problem. First let us observe 
that a very tight constraint on the number of trips makes the problem trivial.  

Lemma 2. For any graph G(V,E), OPTFC0(G)= |V|  

Proof. Trivial: the solution to FC0(G) is a single trip, therefore all nodes must be 
ferried across at once.  

□  

On the other hand a very loose constraint on the number of trips makes the problem 
equivalent to the Ferry Cover problem.  

Lemma 3. For any graph G(V,E), |V| = n, OPTFC2n  - 1 (G) = OPTFC(G)  

Proof. Any solution to FC2n-1(G) allows a ferry plan with at most 2n+1 configurations. 
There are at most 2n legal partitions of the vertices of G into two sets, therefore there 
are at most 2n+1 possible legal configurations. No optimal ferry plan repeats the same 
configuration twice, since the configurations found between two successive 
appearances of the same configuration in a ferry plan can be omitted to produce a 
shorter plan. Therefore, any optimal ferry plan for the unconstrained version has 
length at most 2n+1 and can be realized within the limits of the trip constraint. 

□  

Loosening the trip constraint can only improve the value of the optimal solution.  

Lemma 4. For any graph G and any integer i ≥ 0, OPTFCi (G) ≥ OPTFCi+1 (G).  

Proof. Observe that a ferry plan with trip constraint i can also be executed with trip 
constraint i + 1.  

□   

A different lower bound is given by the following Lemma.  

Lemma 5. For any graph G(V,E), OPTFCm(G) ≥ 1+m
V  

Proof. Observe that a trip constraint of m implies that for any ferry plan the boat will 
arrive at the destination bank at most m + 1 times. Therefore, at least one of them it 
must carry at least 1+m

V  vertices.  
□   
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Setting the trip constraint equal to the number of vertices also makes the constrained 
version of the problem similar to the unconstrained version.  

Lemma 6. For any graph G(V,E), |V| = n, OPTVC(G) ≤ OPTFCn(G) ≤ OPTVC(G) + 1.  

Proof. For the first inequality, a boat capacity smaller than the minimum vertex cover 
allows no trips. For the second inequality it suffices to observe that the ferry plan of 
Lemma 1 can be realized within the trip constraint.  

□   

Corollary 3. Determining OPTFCn is NP-hard. Furthermore, there are constants εF, n0 
> 0 s.t. there is no (1 + εF )-approximation algorithm for OPTFCn with instance size 
greater than n0 vertices unless P = NP.  

Proof. Proof similar to Theorem 1, by using Lemma 6 instead of Lemma 1.  
□   

It is unknown whether there are graphs where OPTFCn(G) > OPTFC(G). We conjecture 
that there is a threshold f(n) s.t. for any graph G, OPTFCf(n)(G)= OPTFC(G) and that f(n) 
is much closer to n than  2n - 1  which was proven in Lemma 3.  

5. The Trip Constrained Ferry Cover problem with trip  
constraint 1 
An interesting special case of the Trip Constrained Ferry Cover problem is that with 
trip constraint 1, i.e. the problem of computing the boat size if we allow at most 3 
trips to be done. The following lemma gives a lower and an upper bound on the 
optimal solution of the problem.  

Lemma 7. For any graph G(V,E), with |V| = n, 2
n ≤ OPTFC1 (G) ≤ n - 1. 

Proof. The first inequality is obtained by Lemma 5, where m = 1. For the second 
inequality we can use the ferry plan for a clique.  

□   

An other upper bound of OPTFC1(G) can be obtained from the following Lemma:  

Lemma 8. For any graph G(V,E), OPTFC1(G) ≤ max{OPTVC(G), OPTMAXIS(G) + 
OPTSVC(G)}.  

Proof. We can have the following ferry plan: load the optimal vertex cover of G that 
has the minimum optimal vertex cover on the boat. Note that the vertices that weren’t 
loaded in the boat constitute a maximum independent set. When the boat reaches the 
destination bank unload as many vertices as possible i.e. OPTVC(G) - OPTSVC(G) and 
travel back with the remaining OPTSVC(G) vertices loaded. Then, for the last trip load 
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the boat with all the vertices that were left in the first bank together with those in the 
boat.  

To execute this ferry plan the boat needs to be of size at most max{OPTVC(G), 
OPTMAXIS(G) + OPTSVC(G)}.  

□   

We can also use the H-Coloring problem to obtain an equivalent definition for FC1.  

Lemma 9. A ferry plan of a graph G for the Trip Constrained Ferry Cover problem 
with constraint 1 is equivalent to an H-coloring of graph G, where H is the graph of 
Figure 2. 

  
Figure 2. Graph H of Lemma 9 

Proof. Given a ferry plan we can define the following homomorphism θ from G to H:  
• θ(u) = 1, where u is every vertex of G that is loaded in the first trip and is 

unloaded in the first trip,  
• θ(u) = 2, where u is every vertex of G that is loaded in the first trip and is 

unloaded in the third trip and  
• θ(u) = 3, where u is every vertex of G that is loaded in the third trip and is 

unloaded in the third trip.  
□   

Corollary 4. For any graph G(V,E), OPTFC1(G) = min{|V2| + max{|V1|,|V3|}}, where 
the minimum is taken among all proper H-colorings of G and V1, V2, V3 are the 
subsets of V that have taken the colors 1, 2 and 3 respectively.  

Proof. From Lemma 9 we obtain a ferry plan for the Trip Constrained Ferry Cover 
problem with constraint 1: load the subsets V1 and V2 in the first trip and unload the 
subset V1 in the opposite bank while keeping V2 in the boat. Then return at the first 
bank and load V3 together with V2 and transport them to the destination bank.  

This implies that the boat should have room for V2 together with one of the sets V1 
and V3.  

□   

The above reformulation of FC1(G) as a problem of finding an H-coloring optimised 
with respect to a given function does not directly yield a result. However, we believe 
that it lends significant insight into the structure of the problem, and that it can be 
extended to cases where the trip constraint is larger than 1. In addition, we conjecture 
that the above reformulation could lead to an NP-hardness proof for FC1(G).  
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6. Conclusions and Further Work  
In this paper we have investigated the algorithmic complexity of several variations of 
River Crossing problems. For the unconstrained Ferry Cover problem we have 
presented results that show it is very closely related to Vertex Cover, which is a 
consequence of the fact that the optimal values for the two problems are almost equal. 
It is an open problem if, given a graph G it can be decided in polynomial time 
whether OPTFC(G) = OPTVC(G) or OPTFC(G) = OPTVC(G) + 1, but we conjecture that 
the answer is negative.  

For the Trip Constrained Ferry Cover problem, we have presented several lemmata 
that point out its relation to the unconstrained version. We believe that this variation 
is more interesting because it appears to be less related to Vertex Cover. It remains an 
open problem to determine at which value of the trip constraint the problem becomes 
equivalent to the unconstrained version (an upper bound on this value is 2n - 1, as 
shown in Lemma 3). Another interesting direction for future research is the study of 
the problem with fairly tight trip constraints, such as the case of FC1 in Section 5. We 
conjecture that the problem remains NP-hard in the case of such tight trip constraints.  
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