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Abstract 

We study the problem of satisfying a maximum number of communication requests in all-
optical WDM rings in which the number of available wavelengths per fiber is limited. We 
investigate two variations of the problem: with or without prior routing of requests. We 
consider a number of new and existing algorithmic approaches for these two variations. We 
perform an experimental comparison of the resulting algorithms, with respect to: (a) the 
number of satisfied requests and (b) the running time. We end up with interesting observations 
that reveal merits and deficiencies of the algorithms in hand: 
• All algorithms almost always manage to satisfy many more requests than indicated by 
their worst-case analysis. 
• Some algorithms are considerably faster than others with comparable request satisfaction 
performance. In fact, there are simple, fast algorithms that achieve a competent number of 
satisfied requests. 

We anticipate that our results will prove useful in practice, especially in deciding which 
routing and wavelength assignment method to choose, taking into account the desired level of 
accuracy and the affordable time cost. 
 
Keywords: WDM rings, path coloring, request satisfaction, wavelength assignment 
 

1. Introduction 
Wavelength Division Multiplexing (WDM) is a dominating technology in 
contemporary all-optical networking. It allows several connections to be established 
through the same fiber links, provided that each of the connections uses a different 
wavelength. A second restriction is imposed by the  wavelength continuity constraint, 
which requires that a connection uses the same wavelength from one end to the other 
in order to avoid the use of wavelength converters which are costly or slow. In 
practice, the available bandwidth is limited to few dozens, or at most hundreds, 
wavelengths per fiber and the situation is not expected to change in the near future. It 
is therefore impossible to serve a large set of communication requests simultaneously. 
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An approach considered in several papers [12, 15, 6, 10, 11] is that of maximizing the 
number of requests that can be served at the same time given that the number of 
wavelengths is limited. Here we study the problem in rings and consider two 
variations: in the first the routing is pre-determined and only a color assignment is 
sought while in the second both a routing and a color assignment are sought. In 
graph-theoretic terms the problems are defined as follows: 

Maximum Path Coloring Problem (MaxPC)  
Input: a graph G , a set of paths P  and a number of available colors .  w
Feasible solution: a set of paths PP ⊆'  that can be colored with  colors so that no 

overlapping paths are assigned the same color.  
w

Goal: maximize .  |'|P

Maximum Routing and Path Coloring Problem (MaxRPC)  
Input: a graph G , a set of pairs of nodes (requests)  and a number of available 

colors .  
R

w
Feasible solution: an assignment of paths to a subset of requests  and a 

coloring of these paths with  colors so that no overlapping paths are assigned 
the same color.  

RR ⊆'
w

Goal: maximize . |'|R

We focus on algorithms for the above problems in rings, which are a highly relevant 
network topology, as has become clear by their extensive use (e.g. SONET rings). 
Both MaxPC and MaxRPC are NP -hard in rings [15, 11]. 

In this work we perform an experimental evaluation of a number of algorithmic 
approaches for these problems in rings. We first propose a new greedy heuristic for 
both problems which is very fast and easy to implement. We also develop improved 
variations of approximation algorithms that have been proposed in [15, 10, 11]. We 
end up with a bunch of seven algorithms for each problem. The comparative study of 
their performance, in terms of satisfied requests and running time, offers some quite 
interesting conclusions. All algorithms almost always manage to satisfy many more 
requests than indicated by their worst-case analysis. There are two simple algorithms 
that achieve satisfactory solutions very fast. The iterative algorithm usually finds 
largest solutions, despite the fact that it has the worst theoretical approximation ratio 
among the more sophisticated algorithms. One of our improved algorithms competes 
well with the iterative algorithm while being several times faster. 

We expect that our results will prove useful in practice, especially in deciding which 
routing and wavelength assignment method to choose, taking into account the desired 
level of accuracy and the affordable time cost. 
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1.1 Related Work 

MaxPC in chains is known as the `` -coloring of intervals'' problem which can be 
solved exactly [4]. For MaxRPC in rings, a -approximation algorithm for the 
undirected problem and a -approximation algorithm for the directed problem are 
given in [10]; for MaxPC in rings a -approximation is described in [11]. Wan and 

Liu [15] present 

k
2/3

7/11
2/3

)1(1
e

− -approximation algorithms for MaxRPC in rings and for 

MaxPC in trees, as well as a constant approximation algorithm for MaxRPC in 
meshes. Their algorithms employ successive calls to algorithms that solve MaxRPC 
or MaxPC in instances with one available color (also known as the Maximum Edge-
Disjoint Paths problem). Using the same technique, Erlebach and Jansen [7] provide a 

)1(1
e

− -approximation algorithm for MaxRPC in bounded-degree bidirected trees 

and a -approximation algorithm for general bidirected trees. The on-line 
version of  MaxRPC  has been studied in [2] where a general technique to obtain a 

0.451

1)( +ρ -competitive algorithm for arbitrary number of wavelengths from a ρ -
competitive algorithm for one wavelength is presented. (While preparing the camera-
ready version of this paper it was brought to our attention that Caragiannis [3] has 
very recently proven that MaxPC and MaxRPC in rings can be approximated within 
3/4; he also shows a 0.7079 ratio for directed MaxRPC. Unfortunately we did not 
have time to include these algorithms in our comparison.) 

A generalization of MaxPC to multi-fiber networks has been considered for rings [13] 
and trees [8], where efficient constant approximation algorithms have been proposed; 
the problem for general topologies has been studied in [14] and [1]. 

1.2 Technical Preliminaries 
A  chain is a graph that consists of a single path, while a  ring is a graph that consists 
of a single cycle. If we remove an edge e  from a ring we get a chain; we call such an 
edge  separation edge. 

Given a network  and a set of requests we denote by  the number of 
nodes, and by m  the number of requests (paths). For a set of paths 

),(= EVG n
P  and an edge e  

we denote by  the  load of edge  w.r.t. ),(eL P e P , that is the number of paths in P  
that use . e
A path which is colored with color c is called a  lonely path if it is the only path 
which is colored with color c. A request is called a  lonely request if it is routed and 
colored so that the corresponding path is a lonely path. Two requests are called  
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compatible (with each other) if they can be routed so that the corresponding paths are 
not overlapping. A request compatibility graph  of an instance 

 is defined as follows. The set of nodes of 
),(= ERH

),,( wG R H  is the set of requests  and 
the set of edges 

R
E  contains all pairs of compatible requests. 

2. Algorithms for MaxPC  (requests are pre-routed) 
In this section we focus on the case in which requests are pre-routed, that is, we study 
the MaxPC problem. Recall that in this case an instance actually consists of a graph 

, a set of paths G P  and a number of colors  and the goal is to color as many paths 
as possible using the given colors, without assigning the same color to overlapping 
paths. 

w

The problem can be solved exactly in )( wnO +  time if the input graph is a chain, 
using the algorithm of Carlisle and Lloyd [4]. That algorithm has some useful 
properties. Let L  be the maximum load of the input chain graph. The following 
holds: 

Fact:  If  the Carlisle-Lloyd algorithm colors all paths using exactly Lw ≥ L  colors. 
If  the algorithm colors a maximum cardinality subset of paths of load exactly 

.  
Lw <

w
Many of the algorithms presented in the rest of the paper make use of the Carlisle-
Lloyd algorithm in order to optimally color chain subinstances. 

2.1 Shortest-First Algorithm 
We first present a new, greedy algorithm for  MaxPC  in rings. This algorithm is easy 
to implement and very fast; nevertheless we will see that it is almost as competent as 
the more sophisticated algorithms that will follow. 

 
We next show that this simple algorithm always achieves a solution of size at least 
one-third the size of an optimal solution. 

Theorem 1. MaxPC-SF is a (1/3)-approximation algorithm for MaxPC  in rings. 

Proof. Let  be the set of paths colored by an optimal solution and *P 'P  be the set of 
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paths colored by MaxPC-SF. Let also *
iP  ( i'P ) be the subset of  ( '*P P  

respectively) that consists of paths colored with the i -th color. 

Let  be any set of non-overlapping paths on the ring. The key idea here is that a 
path  that is colored by MaxPC-SF with color 

D
Dp∈/ j  may prevent, in subsequent 

steps of the algorithm, at most two paths in  from obtaining color D j . The reason is 
that such paths are at least as long as p  (since they are examined by MaxPC-SF later 
than ); therefore, there can be only two of them in  that overlap with . Hence, 
if MaxPC-SF does not color any path in , it must be:  

p D p
D

|'|2|| jD P≤  (1) 

Because, otherwise   MaxPC -SF would have assigned j  to at least one path in . 
Note that equation 

D
(1) holds for all j , wj ≤≤1 . 

Let , that is,  consists of paths that were assigned color  in the 
optimal solution, but were not colored by MaxPC-SF. However  is also a set of 
non-overlapping paths and consequently from equation 

'\= * PP iiD iD i

iD
(1), for all i , wi ≤≤1 : 

w
D j

wj
i

|'|2|'|min2||
1

PP ≤≤
≤≤

 (2) 

Let us now observe that iwi
D∪ ≤≤

∪⊆
1

* 'PP . This implies: 

|3=)|'|(2|'||| * P
P

PP
w

w+≤ .|'  (3) 

This completes the proof. 

Equation (2) implies that MaxPC-SF behaves much better on the average. For 
example, if some color j  has been used fewer than  times, for some  

then 

kw/|'|P 1>k

(3) becomes |'|)2(1|| * PP
k

+≤ ; that is, the solution returned is near-optimal for 

large . Indeed, we will see in Section 4 that MaxPC-SF usually achieves quite 
satisfactory solutions. 

k

A simple implementation of the algorithm costs  time. )(nmwO

2.2 Combining Solutions 
Algorithm MaxPC-CombSol uses two main techniques: the one colors a chain 
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instance and the other colors pairs of non-overlapping paths. The algorithm in fact 
combines the two solutions so as to retain some key properties of both. This algorithm 
is an improved version of the algorithm presented in [11]. The main improvement is 
an additional last step that takes care of remaining paths that possibly lie on edges 
where some color is still free. 

 
It has been shown in [11] that the algorithm presented there achieves an 
approximation guarantee of 2/3. Consequently, this holds for MaxPC-CombSol as 
well, since the main difference of the two algorithms is the addition of the `Coloring 
remaining paths' step which may only augment the solution achieved by the previous 
steps. 

Steps 7 and 8 of Algorithm 2 cost  time. Therefore, the time complexity of 

Algorithm  MaxPC-CombSol is , where  is the complexity of 
the bipartite matching computation, using an algorithm of Ma and Spinrad [9]. 

)(nmwO
)( 2mnmwO + )( 2mO

Algorithm MaxPC-CombSol-all. The selection of the separation edge may be crucial 
for the average performance of the algorithm. Therefore, we will consider a new 
version of the algorithm which consists of  executions of MaxPC-CombSol, each 
time with a different separation edge. Consequently, the complexity of MaxPC-
CombSol-all is , where 

n

)(nBO B  is the complexity of MaxPC-CombSol. 

2.3 Selecting the Best Solution 
The Algorithm MaxPC-BestSol solves each instance of the problem with two 
independent procedures, called Chain Step and Matching Step, and merely chooses 
the best solution between the solutions of these procedures. The Chain Step performs 
the same actions as Steps 1 and 2 of Algorithm 2. In addition, if  free colors remain 
after executing these steps, they are used to color  paths in 

k
k cP . The Matching Step 
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performs the same actions as Steps 3 and 5(a) of Algorithm 2. 

It is to be noted that MaxPC-BestSol achieves the same worst-case approximation 
ratio as the more involved algorithm MaxPC-CombSol. 

Theorem 2. MaxPC-BestSol is a (2/3)-approximation algorithm for  MaxPC  in rings.   

The complexity of the algorithm is determined by the bipartite matching computation 
which can be done in  time, using an algorithm of Ma and Spinrad [9]. )( 2mO

Algorithm MaxPC-Chain. The Chain Step of MaxPC-BestSol can be used as an 
algorithm on its own. Moreover, it can be shown [11] that it achieves an 
approximation guarantee of 1/2 , since wSOLOPT c +≤  (as discussed above) and 

 (each color is used at least once, or all paths are colored). Its time 
complexity is 

wSOLc ≥
)( mnO +  [11]. We will refer to this algorithm as MaxPC-Chain. 

Algorithm MaxPC-BestSol-all. The selection of the separation edge  may again 
play an important role on the average performance of the algorithm, although it does 
not affect the worst-case approximation ratio. Therefore, we will also evaluate a new 
version of the algorithm, called MaxPC-BestSol-all which consists of  executions of 
MaxPC-BestSol, each time with a different separation edge. Clearly, the complexity 
of MaxPC-BestSol-all is , where 

e

n

)(nAO A  is the complexity of MaxPC-BestSol. 

Therefore, it takes  time. )( 2nmO

2.4 Iterative Algorithm 
Algorithm MaxPC-Iter was proposed by Wan and Liu [15] and works as follows. 
Given a set of paths P  and  available colors it examines colors one-by-one. For 
each color c , it computes a maximum subset S  of non-overlapping paths. To 
achieve this, for each path 

w

P∈p  it determines a maximum subset  of pS P  that 
can be colored with the same color as  (using e.g. an algorithm for the well known 
Activity Selection Problem [5, pp. 329-333]), and picks the largest such subset. It 
then colors paths in 

p

S  with color , removes c S  from P  and proceeds with the next 
color. 

Algorithm MaxPC-Iter achieves an approximation guarantee of 

0.63211>)1(11 ≈−−−
ew

w ; the ratio w

w
)1(11 −−  is slightly worse (for ) 

than the approximation guarantee of 2/3  achieved by algorithms MaxPC-BestSol, 
MaxPC-BestSol-all, MaxPC-CombSol, and MaxPC-CombSol-all. The complexity of 
this algorithm is . 

10>w

)log( 2 mwmO
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3. Algorithms for MaxRPC (Requests are not pre-routed) 

3.1 Shortest-First Algorithm 
We present MaxRPC-SF, which is a heuristic analogous to the simple heuristic for 
MaxPC; the difference is that it takes care of the routing too. 

 
As for MaxPC-SF, it can be shown that MaxRPC-SF is a (1/3)-approximation 
algorithm and that a simple implementation of the algorithm costs  time. )(nmwO

3.2 Combining Solutions 
Our second algorithm for MaxRPC is the analogue of MaxPC-CombSol for the  
MaxRPC problem. 

 
It can be shown that MaxRPC-CombSol returns a solution which is at least as large as 
the solution returned by a (2/3)-approximation algorithm for MaxRPC in rings that 
was presented in [10] (we will also implement that algorithm under the name   
MaxRPC-BestSol; see next subsection). Therefore, MaxRPC-CombSol is a (2/3)-
approximation algorithm. 

Steps 5 and 6 of Algorithm 4 cost  time. Therefore, the time complexity of )(nmwO
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Algorithm MaxRPC-CombSol is , where  is the time 
complexity of the maximum matching computation. 

)( 3mnmwO + )( 3mO

As before, we will also consider an algorithm consisting of n  calls of MaxRPC-
CombSol, each with a different separation edge; we call this algorithm MaxRPC-
CombSol-all. The complexity of MaxRPC-CombSol-all is O . )( 32mw nmn +

3.3 Selecting the Best Solution 
Algorithm MaxRPC-BestSol was presented in [10]. The Chain Step is the same as 
Steps 1 and 2 of Algorithm 4. The Matching Step is the same as Steps 3 and 5(a) of 
Algortihm 4. As for MaxPC-BestSol, we independently call the Chain Step and the 
Matching Step and choose the best solution between the two solutions. 

Similar to MaxPC-BestSol we consider the variation of MaxRPC-BestSol consisting 
of  calls of MaxRPC-BestSol, each with a different separation edge; we call this 
algorithm MaxRPC-BestSol-all. We also consider the chain step of MaxRPC-BestSol 
as a separate algorithm, called MaxRPC-Chain. 

n

As shown in [10], MaxPC-BestSol is a -approximation algorithm. As a 
corollary, MaxRPC-BestSol-all is also a -approximation algorithm. It was also 
shown in [10] that MaxRPC-Chain is a (1/2) -approximation algorithm. 

(2/3)
(2/3)

The complexity of MaxRPC-BestSol is determined by the maximum matching 
computation which can be done in  time. The complexity of MaxRPC-
BestSol-all is , where 

)( 3mO
)(nAO A  is the complexity of MaxRPC-BestSol. Therefore, it 

takes  time. )( 3nmO

3.4 Iterative Algorithm 
Wan and Liu [15] have also proposed an algorithm, which we will refer to as   
MaxRPC-Iter, for MaxRPC in rings. The algorithm works similarly to MaxPC-Iter, 
except that for each color  and for each request c r  it examines two paths: one 
corresponds to clockwise routing of r , the other corresponds to counter-clockwise 
routing of r . In each case, every other request is routed so as to avoid overlapping 
with the path assigned to r  or it is ignored if no such routing exists. After considering 
all routings obtained as above, the one that routes a maximum subset  of requests is 
chosen and the corresponding paths are colored with the current color . The requests 
in  are then removed from the input and the algorithm proceeds with the next color. 
Similar to  MaxPC -Iter, the iterative algorithm for MaxRPC in rings achieves an 

approximation ratio of 

S
c

S

0.63211)1(11 ≈−≥−−
ew

w  and its time complexity is 
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)log( 2 mwmO . 

 

4. Experimental Results 
We implemented all algorithms in C++, making use of the LEDA class library of 
efficient data types and algorithms. All source files were compiled with the Borland 
C++ 5.5 for Win32 compiler, set to generate fastest possible code. We relied on 
LEDA routines and classes for graph, array, list and priority queue operations 
including sorting and finding matchings in general graphs. The experiments were run 
on a Pentium 4 3.2GHz with 512MB of memory. 

For each combination of number of nodes ( ), number of paths/requests ( ) and 
number of available wavelengths ( ), we randomly generated two sets of 60 
instances each. For the first set, we assumed uniform distribution of the endpoints of 
the paths/requests over the nodes of the ring. For the second set, we assumed normal 

n m
w
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distribution with standard deviation approximately 
15
2= nσ . 

 
We executed each algorithm on these sets of instances and measured the average 
execution time and the average number of satisfied paths/requests. Furthermore, for 
each of these values we calculated a 95 percent confidence interval which is shown 
on the plots. However, in some cases, this interval is quite small and may not be 
clearly visible. In the plots where we show the number of satisfied paths/requests, we 
include a computed upper bound for the sake of comparison. 

Note that execution times were measured using the  timer class of the LEDA package, 
which does not provide for measuring exact processor time. However, we ran the 
experiments on a dedicated machine in order to keep background processes at a 
minimum. 

4.1 Computing an Upper Bound on  OPT
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In order to obtain an estimation of the performance of our algorithms we propose an 
efficient way to compute an upper bound on the value of an optimal solution. We 
denote by length(p) the number of edges that path  uses. If requests are given 
instead of paths (MaxRPC problem) we consider for each request  the 
shortest path 

p
),(= jir

p  between nodes i  and j . We index all paths in non-decreasing order 
of their  length. It can be easily proven that the following lemma holds: 

Lemma 1. Let  be the smallest number such that k nwplength i
k

i
>)(1

1=∑ +
. Then k  is 

an upper bound on the number of paths (requests) that can be satisfied with  colors.   w
We could derive an alternative upper bound, using the solution of MaxPC-Chain, 
since any solution can color at most that many paths as those colored by MaxPC-
Chain plus at most  paths (requests) passing through edge e  (respectively, routed 
using edge ). However, we observed that this upper bound is similar to the one 
proposed in Lemma 1. 

w
e

4.2 Discussion 
A first observation is that all algorithms perform considerably better than their 
theoretical guarantee. Indeed, we have included a curve showing the computed upper 
bound (UB) in our figures and it turns out that all algorithms manage to satisfy a good 
fraction of an optimal solution, very often better than the theoretically predicted. 
Taking also into account that the upper bound used may be overestimated it is 
possible that the actual performance of the algorithms is even better. 

The experimental comparison of the algorithms shows that each algorithm for  
MaxPC has similar behaviour on instances of similar size with the corresponding 
algorithm for MaxRPC. Note however that the latter is slightly slower (since routing 
is involved) but usually achieves a higher number of satisfied requests, probably due 
to the freedom of choosing a more adequate routing for each request. 

Clearly, the best algorithms in terms of number of satisfied requests are Max(R)PC-
Iter and Max(R)PC-CombSol-all; however Max(R)PC-CombSol-all has the worst 
time complexity and Max(R)PC-Iter, while faster than Max(R)PC-CombSol-all, is 
still quite slow compared to Max(R)PC-SF, Max(R)PC-Chain, Max(R)PC-BestSol 
and Max(R)PC-CombSol; among the latter, Max(R)PC-CombSol is competitive. In 
fact, in terms of performance per time unit spent Max(R)PC-CombSol is clearly the 
best of all algorithms. Max(R)PC-Chain seems to be even better with respect to 
performance/time ratio, providing solutions that can be considered satisfactory very 
fast; however its performance decreases linearly as the number of wavelengths 
increases (see Figure 2). In contrast, algorithm Max(R)PC-SF, which is also 
extremely fast, remains relatively competitive even for large number of wavelengths. 
Finally, Max(R)PC-BestSol has practically the same performance as the much faster 
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Max(R)PC-Chain and Max(R)PC-BestSol-all has poor performance while being the 
most time-consuming algorithm. 

 
It is rather surprising that for large values of  Max(R)PC-Iter exhibits a clear 
superiority although it has the theoretically worst approximation ratio among all the 
algorithms (with the exception of Max(R)PC-Chain and Max(R)PC-SF). Figure 2 
shows that the superiority of Max(R)PC-Iter increases as  increases, but its time 
complexity depends linearly on  while all other algorithms are practically 
independent from  (probably with the exception of Max(R)PC-CombSol-all). 
Besides, Max(R)PC-Iter exhibits a super-quadratic dependence on the number of 
requests , as shown in Figures 3 and 6. A similar dependence on  characterizes 
also Max(R)PC-CombSol-all and Max(R)PC-BestSol-all, while all other algorithms 
seem to have a sub-quadratic dependence on . 

w

w
w

w

m m

m
Finally, Figure 6 shows that the time complexity of Max(R)PC-Iter has a super-
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quadratic dependence on  (the number of requests), the time complexity of 
Max(R)PC-Chain and Max(R)PC-SF is almost linear on m  and the time complexities 
of the remaining algorithms are quadratic on . These differences may become 
crucial for very large numbers of requests. 

m

m

5. Conclusions 
We have presented various algorithms for the MaxPC and MaxRPC problems in rings 
and have demonstrated results concerning the achieved practical performance. 

To evaluate the experimental results we take into consideration the number of 
satisfied requests as well as the time performance. Taking into account both measures 
we first remark that Max(R)PC-CombSol is probably the algorithm of choice for 
practical purposes, since it achieves one of the best performances, in respect to the 
number of satisfied requests, and at the same time its time requirements are relatively 
low. Of course Max(R)PC-Iter and Max(R)PC-CombSol-all produce better solutions 
than Max(R)PC-CombSol, especially as  increases. Undoubtedly Max(R)PC-Iter 
performs better than all other algorithms for very large  but it gets much slower at 
the same time, because it depends linearly on w . 

w
w

From a practical point of view, we can assume that the number of nodes and the 
number of wavelengths are fixed, thus it is important to consider the behavior of 
algorithms with respect to the number of requests . The superiority of Max(R)PC-
CombSol is even more clear in this case considering its time performance. The next 
best choice seems to be Max(R)PC-Iter which exhibits a ``middle'' time performance. 

m

Max(R)PC-BestSol and Max(R)PC-BestSol-all are not at all competitive because they 
fail to provide better solutions than much faster algorithms like Max(R)PC-SF, 
Max(R)PC-Chain and Max(R)PC-CombSol. The new greedy heuristic Max(R)PC-SF 
is a decent choice whenever time is crucial, since it achieves relatively large solutions 
while being one of the fastest of algorithms. Table 1 summarizes the above 
observations. 

 
Directions for further research include fine-tuning of some parts of the algorithms. 
For example, it would make sense to set a threshold on the number of iterations of 
Max(R)PC-Iter and combine it with some other strategy for the remaining colors; this 
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could result in more acceptable running times even for large values of . w
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