

Maximum Request Satisfaction in WDM Rings:
Algorithms and Experiments

Evangelos Bampas, Aris Pagourtzis, and Katerina Potika

School of Electrical & Computer Engineering,
National Technical University of Athens

Zografou Campus, 15780, Athens, Greece
{ebamp, pagour, epotik}@cs.ntua.gr

Abstract

We study the problem of satisfying a maximum number of communication requests in all-
optical WDM rings in which the number of available wavelengths per fiber is limited. We
investigate two variations of the problem: with or without prior routing of requests. We
consider a number of new and existing algorithmic approaches for these two variations. We
perform an experimental comparison of the resulting algorithms, with respect to: (a) the
number of satisfied requests and (b) the running time. We end up with interesting observations
that reveal merits and deficiencies of the algorithms in hand:
• All algorithms almost always manage to satisfy many more requests than indicated by
their worst-case analysis.
• Some algorithms are considerably faster than others with comparable request satisfaction
performance. In fact, there are simple, fast algorithms that achieve a competent number of
satisfied requests.

We anticipate that our results will prove useful in practice, especially in deciding which
routing and wavelength assignment method to choose, taking into account the desired level of
accuracy and the affordable time cost.

Keywords: WDM rings, path coloring, request satisfaction, wavelength assignment

1. Introduction
Wavelength Division Multiplexing (WDM) is a dominating technology in
contemporary all-optical networking. It allows several connections to be established
through the same fiber links, provided that each of the connections uses a different
wavelength. A second restriction is imposed by the wavelength continuity constraint,
which requires that a connection uses the same wavelength from one end to the other
in order to avoid the use of wavelength converters which are costly or slow. In
practice, the available bandwidth is limited to few dozens, or at most hundreds,
wavelengths per fiber and the situation is not expected to change in the near future. It
is therefore impossible to serve a large set of communication requests simultaneously.

11th Panhellenic Conference in Informatics 628

An approach considered in several papers [12, 15, 6, 10, 11] is that of maximizing the
number of requests that can be served at the same time given that the number of
wavelengths is limited. Here we study the problem in rings and consider two
variations: in the first the routing is pre-determined and only a color assignment is
sought while in the second both a routing and a color assignment are sought. In
graph-theoretic terms the problems are defined as follows:

Maximum Path Coloring Problem (MaxPC)
Input: a graph G , a set of paths P and a number of available colors . w
Feasible solution: a set of paths PP ⊆' that can be colored with colors so that no

overlapping paths are assigned the same color.
w

Goal: maximize . |'|P

Maximum Routing and Path Coloring Problem (MaxRPC)
Input: a graph G , a set of pairs of nodes (requests) and a number of available

colors .
R

w
Feasible solution: an assignment of paths to a subset of requests and a

coloring of these paths with colors so that no overlapping paths are assigned
the same color.

RR ⊆'
w

Goal: maximize . |'|R

We focus on algorithms for the above problems in rings, which are a highly relevant
network topology, as has become clear by their extensive use (e.g. SONET rings).
Both MaxPC and MaxRPC are NP -hard in rings [15, 11].

In this work we perform an experimental evaluation of a number of algorithmic
approaches for these problems in rings. We first propose a new greedy heuristic for
both problems which is very fast and easy to implement. We also develop improved
variations of approximation algorithms that have been proposed in [15, 10, 11]. We
end up with a bunch of seven algorithms for each problem. The comparative study of
their performance, in terms of satisfied requests and running time, offers some quite
interesting conclusions. All algorithms almost always manage to satisfy many more
requests than indicated by their worst-case analysis. There are two simple algorithms
that achieve satisfactory solutions very fast. The iterative algorithm usually finds
largest solutions, despite the fact that it has the worst theoretical approximation ratio
among the more sophisticated algorithms. One of our improved algorithms competes
well with the iterative algorithm while being several times faster.

We expect that our results will prove useful in practice, especially in deciding which
routing and wavelength assignment method to choose, taking into account the desired
level of accuracy and the affordable time cost.

Algorithms and Complexity 629

1.1 Related Work

MaxPC in chains is known as the `` -coloring of intervals'' problem which can be
solved exactly [4]. For MaxRPC in rings, a -approximation algorithm for the
undirected problem and a -approximation algorithm for the directed problem are
given in [10]; for MaxPC in rings a -approximation is described in [11]. Wan and

Liu [15] present

k
2/3

7/11
2/3

)1(1
e

− -approximation algorithms for MaxRPC in rings and for

MaxPC in trees, as well as a constant approximation algorithm for MaxRPC in
meshes. Their algorithms employ successive calls to algorithms that solve MaxRPC
or MaxPC in instances with one available color (also known as the Maximum Edge-
Disjoint Paths problem). Using the same technique, Erlebach and Jansen [7] provide a

)1(1
e

− -approximation algorithm for MaxRPC in bounded-degree bidirected trees

and a -approximation algorithm for general bidirected trees. The on-line
version of MaxRPC has been studied in [2] where a general technique to obtain a

0.451

1)(+ρ -competitive algorithm for arbitrary number of wavelengths from a ρ -
competitive algorithm for one wavelength is presented. (While preparing the camera-
ready version of this paper it was brought to our attention that Caragiannis [3] has
very recently proven that MaxPC and MaxRPC in rings can be approximated within
3/4; he also shows a 0.7079 ratio for directed MaxRPC. Unfortunately we did not
have time to include these algorithms in our comparison.)

A generalization of MaxPC to multi-fiber networks has been considered for rings [13]
and trees [8], where efficient constant approximation algorithms have been proposed;
the problem for general topologies has been studied in [14] and [1].

1.2 Technical Preliminaries
A chain is a graph that consists of a single path, while a ring is a graph that consists
of a single cycle. If we remove an edge e from a ring we get a chain; we call such an
edge separation edge.

Given a network and a set of requests we denote by the number of
nodes, and by m the number of requests (paths). For a set of paths

),(= EVG n
P and an edge e

we denote by the load of edge w.r.t.),(eL P e P , that is the number of paths in P
that use . e
A path which is colored with color c is called a lonely path if it is the only path
which is colored with color c. A request is called a lonely request if it is routed and
colored so that the corresponding path is a lonely path. Two requests are called

11th Panhellenic Conference in Informatics 630

compatible (with each other) if they can be routed so that the corresponding paths are
not overlapping. A request compatibility graph of an instance

 is defined as follows. The set of nodes of
),(= ERH

),,(wG R H is the set of requests and
the set of edges

R
E contains all pairs of compatible requests.

2. Algorithms for MaxPC (requests are pre-routed)
In this section we focus on the case in which requests are pre-routed, that is, we study
the MaxPC problem. Recall that in this case an instance actually consists of a graph

, a set of paths G P and a number of colors and the goal is to color as many paths
as possible using the given colors, without assigning the same color to overlapping
paths.

w

The problem can be solved exactly in)(wnO + time if the input graph is a chain,
using the algorithm of Carlisle and Lloyd [4]. That algorithm has some useful
properties. Let L be the maximum load of the input chain graph. The following
holds:

Fact: If the Carlisle-Lloyd algorithm colors all paths using exactly Lw ≥ L colors.
If the algorithm colors a maximum cardinality subset of paths of load exactly

.
Lw <

w
Many of the algorithms presented in the rest of the paper make use of the Carlisle-
Lloyd algorithm in order to optimally color chain subinstances.

2.1 Shortest-First Algorithm
We first present a new, greedy algorithm for MaxPC in rings. This algorithm is easy
to implement and very fast; nevertheless we will see that it is almost as competent as
the more sophisticated algorithms that will follow.

We next show that this simple algorithm always achieves a solution of size at least
one-third the size of an optimal solution.

Theorem 1. MaxPC-SF is a (1/3)-approximation algorithm for MaxPC in rings.

Proof. Let be the set of paths colored by an optimal solution and *P 'P be the set of

Algorithms and Complexity 631

paths colored by MaxPC-SF. Let also *
iP (i'P) be the subset of ('*P P

respectively) that consists of paths colored with the i -th color.

Let be any set of non-overlapping paths on the ring. The key idea here is that a
path that is colored by MaxPC-SF with color

D
Dp∈/ j may prevent, in subsequent

steps of the algorithm, at most two paths in from obtaining color D j . The reason is
that such paths are at least as long as p (since they are examined by MaxPC-SF later
than); therefore, there can be only two of them in that overlap with . Hence,
if MaxPC-SF does not color any path in , it must be:

p D p
D

|'|2|| jD P≤ (1)

Because, otherwise MaxPC -SF would have assigned j to at least one path in .
Note that equation

D
(1) holds for all j , wj ≤≤1 .

Let , that is, consists of paths that were assigned color in the
optimal solution, but were not colored by MaxPC-SF. However is also a set of
non-overlapping paths and consequently from equation

'\= * PP iiD iD i

iD
(1), for all i , wi ≤≤1 :

w
D j

wj
i

|'|2|'|min2||
1

PP ≤≤
≤≤

 (2)

Let us now observe that iwi
D∪ ≤≤

∪⊆
1

* 'PP . This implies:

|3=)|'|(2|'||| * P
P

PP
w

w+≤ .|' (3)

This completes the proof.

Equation (2) implies that MaxPC-SF behaves much better on the average. For
example, if some color j has been used fewer than times, for some

then

kw/|'|P 1>k

(3) becomes |'|)2(1|| * PP
k

+≤ ; that is, the solution returned is near-optimal for

large . Indeed, we will see in Section 4 that MaxPC-SF usually achieves quite
satisfactory solutions.

k

A simple implementation of the algorithm costs time.)(nmwO

2.2 Combining Solutions
Algorithm MaxPC-CombSol uses two main techniques: the one colors a chain

11th Panhellenic Conference in Informatics 632

instance and the other colors pairs of non-overlapping paths. The algorithm in fact
combines the two solutions so as to retain some key properties of both. This algorithm
is an improved version of the algorithm presented in [11]. The main improvement is
an additional last step that takes care of remaining paths that possibly lie on edges
where some color is still free.

It has been shown in [11] that the algorithm presented there achieves an
approximation guarantee of 2/3. Consequently, this holds for MaxPC-CombSol as
well, since the main difference of the two algorithms is the addition of the `Coloring
remaining paths' step which may only augment the solution achieved by the previous
steps.

Steps 7 and 8 of Algorithm 2 cost time. Therefore, the time complexity of

Algorithm MaxPC-CombSol is , where is the complexity of
the bipartite matching computation, using an algorithm of Ma and Spinrad [9].

)(nmwO
)(2mnmwO +)(2mO

Algorithm MaxPC-CombSol-all. The selection of the separation edge may be crucial
for the average performance of the algorithm. Therefore, we will consider a new
version of the algorithm which consists of executions of MaxPC-CombSol, each
time with a different separation edge. Consequently, the complexity of MaxPC-
CombSol-all is , where

n

)(nBO B is the complexity of MaxPC-CombSol.

2.3 Selecting the Best Solution
The Algorithm MaxPC-BestSol solves each instance of the problem with two
independent procedures, called Chain Step and Matching Step, and merely chooses
the best solution between the solutions of these procedures. The Chain Step performs
the same actions as Steps 1 and 2 of Algorithm 2. In addition, if free colors remain
after executing these steps, they are used to color paths in

k
k cP . The Matching Step

Algorithms and Complexity 633

performs the same actions as Steps 3 and 5(a) of Algorithm 2.

It is to be noted that MaxPC-BestSol achieves the same worst-case approximation
ratio as the more involved algorithm MaxPC-CombSol.

Theorem 2. MaxPC-BestSol is a (2/3)-approximation algorithm for MaxPC in rings.

The complexity of the algorithm is determined by the bipartite matching computation
which can be done in time, using an algorithm of Ma and Spinrad [9].)(2mO

Algorithm MaxPC-Chain. The Chain Step of MaxPC-BestSol can be used as an
algorithm on its own. Moreover, it can be shown [11] that it achieves an
approximation guarantee of 1/2 , since wSOLOPT c +≤ (as discussed above) and

 (each color is used at least once, or all paths are colored). Its time
complexity is

wSOLc ≥
)(mnO + [11]. We will refer to this algorithm as MaxPC-Chain.

Algorithm MaxPC-BestSol-all. The selection of the separation edge may again
play an important role on the average performance of the algorithm, although it does
not affect the worst-case approximation ratio. Therefore, we will also evaluate a new
version of the algorithm, called MaxPC-BestSol-all which consists of executions of
MaxPC-BestSol, each time with a different separation edge. Clearly, the complexity
of MaxPC-BestSol-all is , where

e

n

)(nAO A is the complexity of MaxPC-BestSol.

Therefore, it takes time.)(2nmO

2.4 Iterative Algorithm
Algorithm MaxPC-Iter was proposed by Wan and Liu [15] and works as follows.
Given a set of paths P and available colors it examines colors one-by-one. For
each color c , it computes a maximum subset S of non-overlapping paths. To
achieve this, for each path

w

P∈p it determines a maximum subset of pS P that
can be colored with the same color as (using e.g. an algorithm for the well known
Activity Selection Problem [5, pp. 329-333]), and picks the largest such subset. It
then colors paths in

p

S with color , removes c S from P and proceeds with the next
color.

Algorithm MaxPC-Iter achieves an approximation guarantee of

0.63211>)1(11 ≈−−−
ew

w ; the ratio w

w
)1(11 −− is slightly worse (for)

than the approximation guarantee of 2/3 achieved by algorithms MaxPC-BestSol,
MaxPC-BestSol-all, MaxPC-CombSol, and MaxPC-CombSol-all. The complexity of
this algorithm is .

10>w

)log(2 mwmO

11th Panhellenic Conference in Informatics 634

3. Algorithms for MaxRPC (Requests are not pre-routed)

3.1 Shortest-First Algorithm
We present MaxRPC-SF, which is a heuristic analogous to the simple heuristic for
MaxPC; the difference is that it takes care of the routing too.

As for MaxPC-SF, it can be shown that MaxRPC-SF is a (1/3)-approximation
algorithm and that a simple implementation of the algorithm costs time.)(nmwO

3.2 Combining Solutions
Our second algorithm for MaxRPC is the analogue of MaxPC-CombSol for the
MaxRPC problem.

It can be shown that MaxRPC-CombSol returns a solution which is at least as large as
the solution returned by a (2/3)-approximation algorithm for MaxRPC in rings that
was presented in [10] (we will also implement that algorithm under the name
MaxRPC-BestSol; see next subsection). Therefore, MaxRPC-CombSol is a (2/3)-
approximation algorithm.

Steps 5 and 6 of Algorithm 4 cost time. Therefore, the time complexity of)(nmwO

Algorithms and Complexity 635

Algorithm MaxRPC-CombSol is , where is the time
complexity of the maximum matching computation.

)(3mnmwO +)(3mO

As before, we will also consider an algorithm consisting of n calls of MaxRPC-
CombSol, each with a different separation edge; we call this algorithm MaxRPC-
CombSol-all. The complexity of MaxRPC-CombSol-all is O .)(32mw nmn +

3.3 Selecting the Best Solution
Algorithm MaxRPC-BestSol was presented in [10]. The Chain Step is the same as
Steps 1 and 2 of Algorithm 4. The Matching Step is the same as Steps 3 and 5(a) of
Algortihm 4. As for MaxPC-BestSol, we independently call the Chain Step and the
Matching Step and choose the best solution between the two solutions.

Similar to MaxPC-BestSol we consider the variation of MaxRPC-BestSol consisting
of calls of MaxRPC-BestSol, each with a different separation edge; we call this
algorithm MaxRPC-BestSol-all. We also consider the chain step of MaxRPC-BestSol
as a separate algorithm, called MaxRPC-Chain.

n

As shown in [10], MaxPC-BestSol is a -approximation algorithm. As a
corollary, MaxRPC-BestSol-all is also a -approximation algorithm. It was also
shown in [10] that MaxRPC-Chain is a (1/2) -approximation algorithm.

(2/3)
(2/3)

The complexity of MaxRPC-BestSol is determined by the maximum matching
computation which can be done in time. The complexity of MaxRPC-
BestSol-all is , where

)(3mO
)(nAO A is the complexity of MaxRPC-BestSol. Therefore, it

takes time.)(3nmO

3.4 Iterative Algorithm
Wan and Liu [15] have also proposed an algorithm, which we will refer to as
MaxRPC-Iter, for MaxRPC in rings. The algorithm works similarly to MaxPC-Iter,
except that for each color and for each request c r it examines two paths: one
corresponds to clockwise routing of r , the other corresponds to counter-clockwise
routing of r . In each case, every other request is routed so as to avoid overlapping
with the path assigned to r or it is ignored if no such routing exists. After considering
all routings obtained as above, the one that routes a maximum subset of requests is
chosen and the corresponding paths are colored with the current color . The requests
in are then removed from the input and the algorithm proceeds with the next color.
Similar to MaxPC -Iter, the iterative algorithm for MaxRPC in rings achieves an

approximation ratio of

S
c

S

0.63211)1(11 ≈−≥−−
ew

w and its time complexity is

11th Panhellenic Conference in Informatics 636

)log(2 mwmO .

4. Experimental Results
We implemented all algorithms in C++, making use of the LEDA class library of
efficient data types and algorithms. All source files were compiled with the Borland
C++ 5.5 for Win32 compiler, set to generate fastest possible code. We relied on
LEDA routines and classes for graph, array, list and priority queue operations
including sorting and finding matchings in general graphs. The experiments were run
on a Pentium 4 3.2GHz with 512MB of memory.

For each combination of number of nodes (), number of paths/requests () and
number of available wavelengths (), we randomly generated two sets of 60
instances each. For the first set, we assumed uniform distribution of the endpoints of
the paths/requests over the nodes of the ring. For the second set, we assumed normal

n m
w

Algorithms and Complexity 637

distribution with standard deviation approximately
15
2= nσ .

We executed each algorithm on these sets of instances and measured the average
execution time and the average number of satisfied paths/requests. Furthermore, for
each of these values we calculated a 95 percent confidence interval which is shown
on the plots. However, in some cases, this interval is quite small and may not be
clearly visible. In the plots where we show the number of satisfied paths/requests, we
include a computed upper bound for the sake of comparison.

Note that execution times were measured using the timer class of the LEDA package,
which does not provide for measuring exact processor time. However, we ran the
experiments on a dedicated machine in order to keep background processes at a
minimum.

4.1 Computing an Upper Bound on OPT

11th Panhellenic Conference in Informatics 638

In order to obtain an estimation of the performance of our algorithms we propose an
efficient way to compute an upper bound on the value of an optimal solution. We
denote by length(p) the number of edges that path uses. If requests are given
instead of paths (MaxRPC problem) we consider for each request the
shortest path

p
),(= jir

p between nodes i and j . We index all paths in non-decreasing order
of their length. It can be easily proven that the following lemma holds:

Lemma 1. Let be the smallest number such that k nwplength i
k

i
>)(1

1=∑ +
. Then k is

an upper bound on the number of paths (requests) that can be satisfied with colors. w
We could derive an alternative upper bound, using the solution of MaxPC-Chain,
since any solution can color at most that many paths as those colored by MaxPC-
Chain plus at most paths (requests) passing through edge e (respectively, routed
using edge). However, we observed that this upper bound is similar to the one
proposed in Lemma 1.

w
e

4.2 Discussion
A first observation is that all algorithms perform considerably better than their
theoretical guarantee. Indeed, we have included a curve showing the computed upper
bound (UB) in our figures and it turns out that all algorithms manage to satisfy a good
fraction of an optimal solution, very often better than the theoretically predicted.
Taking also into account that the upper bound used may be overestimated it is
possible that the actual performance of the algorithms is even better.

The experimental comparison of the algorithms shows that each algorithm for
MaxPC has similar behaviour on instances of similar size with the corresponding
algorithm for MaxRPC. Note however that the latter is slightly slower (since routing
is involved) but usually achieves a higher number of satisfied requests, probably due
to the freedom of choosing a more adequate routing for each request.

Clearly, the best algorithms in terms of number of satisfied requests are Max(R)PC-
Iter and Max(R)PC-CombSol-all; however Max(R)PC-CombSol-all has the worst
time complexity and Max(R)PC-Iter, while faster than Max(R)PC-CombSol-all, is
still quite slow compared to Max(R)PC-SF, Max(R)PC-Chain, Max(R)PC-BestSol
and Max(R)PC-CombSol; among the latter, Max(R)PC-CombSol is competitive. In
fact, in terms of performance per time unit spent Max(R)PC-CombSol is clearly the
best of all algorithms. Max(R)PC-Chain seems to be even better with respect to
performance/time ratio, providing solutions that can be considered satisfactory very
fast; however its performance decreases linearly as the number of wavelengths
increases (see Figure 2). In contrast, algorithm Max(R)PC-SF, which is also
extremely fast, remains relatively competitive even for large number of wavelengths.
Finally, Max(R)PC-BestSol has practically the same performance as the much faster

Algorithms and Complexity 639

Max(R)PC-Chain and Max(R)PC-BestSol-all has poor performance while being the
most time-consuming algorithm.

It is rather surprising that for large values of Max(R)PC-Iter exhibits a clear
superiority although it has the theoretically worst approximation ratio among all the
algorithms (with the exception of Max(R)PC-Chain and Max(R)PC-SF). Figure 2
shows that the superiority of Max(R)PC-Iter increases as increases, but its time
complexity depends linearly on while all other algorithms are practically
independent from (probably with the exception of Max(R)PC-CombSol-all).
Besides, Max(R)PC-Iter exhibits a super-quadratic dependence on the number of
requests , as shown in Figures 3 and 6. A similar dependence on characterizes
also Max(R)PC-CombSol-all and Max(R)PC-BestSol-all, while all other algorithms
seem to have a sub-quadratic dependence on .

w

w
w

w

m m

m
Finally, Figure 6 shows that the time complexity of Max(R)PC-Iter has a super-

11th Panhellenic Conference in Informatics 640

quadratic dependence on (the number of requests), the time complexity of
Max(R)PC-Chain and Max(R)PC-SF is almost linear on m and the time complexities
of the remaining algorithms are quadratic on . These differences may become
crucial for very large numbers of requests.

m

m

5. Conclusions
We have presented various algorithms for the MaxPC and MaxRPC problems in rings
and have demonstrated results concerning the achieved practical performance.

To evaluate the experimental results we take into consideration the number of
satisfied requests as well as the time performance. Taking into account both measures
we first remark that Max(R)PC-CombSol is probably the algorithm of choice for
practical purposes, since it achieves one of the best performances, in respect to the
number of satisfied requests, and at the same time its time requirements are relatively
low. Of course Max(R)PC-Iter and Max(R)PC-CombSol-all produce better solutions
than Max(R)PC-CombSol, especially as increases. Undoubtedly Max(R)PC-Iter
performs better than all other algorithms for very large but it gets much slower at
the same time, because it depends linearly on w .

w
w

From a practical point of view, we can assume that the number of nodes and the
number of wavelengths are fixed, thus it is important to consider the behavior of
algorithms with respect to the number of requests . The superiority of Max(R)PC-
CombSol is even more clear in this case considering its time performance. The next
best choice seems to be Max(R)PC-Iter which exhibits a ``middle'' time performance.

m

Max(R)PC-BestSol and Max(R)PC-BestSol-all are not at all competitive because they
fail to provide better solutions than much faster algorithms like Max(R)PC-SF,
Max(R)PC-Chain and Max(R)PC-CombSol. The new greedy heuristic Max(R)PC-SF
is a decent choice whenever time is crucial, since it achieves relatively large solutions
while being one of the fastest of algorithms. Table 1 summarizes the above
observations.

Directions for further research include fine-tuning of some parts of the algorithms.
For example, it would make sense to set a threshold on the number of iterations of
Max(R)PC-Iter and combine it with some other strategy for the remaining colors; this

Algorithms and Complexity 641

could result in more acceptable running times even for large values of . w
Acknowledgement: Research supported in part by the General Secretariat of
Research and Technology of Greece through ΠΕΝΕΔ 2003 programme, contract nr.
03ΕΔ285, co-funded by the European Social Fund (75%) and national resources
(25%) and also by the National Technical University of Athens through “Protagoras”
grant.

References
1. M. Andrews and L. Zhang. Complexity of wavelength assignment in optical

network optimization. In Proceedings of the 25nd Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2006), 2006.

2. B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Ros´en. On-line competitive
algorithms for call admission in optical networks. Algorithmica, 31(1):29–43,
2001.

3. I. Caragiannis. Wavelength management in WDM rings to maximize the number of
connections. In Proceedings of the 24th International Symposium on Theoretical
Aspects of Computer Science (STACS 07), Lecture Notes on Computer Science.
Springer, 2007.

4. M. Carlisle and E. Lloyd. On the k-coloring of intervals. Discrete Applied
Mathematics, 59:225–235, 1995.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. mcgraw, second edition, 2001.

6. T. Erlebach and K. Jansen. Maximizing the number of connections in optical tree
networks. In Proceedings of the 9th Annual International Symposium on
Algorithms and Computation (ISAAC ’98), LNCS 1533, pages 179–188, 1998.

7. T. Erlebach and K. Jansen. The maximum edge-disjoint paths problem in
bidirected trees. SIAM Journal on Discrete Mathematics, 14(3):326–355, 2001.

8. T. Erlebach, A. Pagourtzis, K. Potika, and S. Stefanakos. Resource allocation
problems in multifiber wdm tree networks. In Proc. of the 29th Workshop on
Graph Theoretic Concepts in Computer Science, LNCS 2880, pages 218–229.
Springer-Verlag, 2003.

9. T.-H. Ma and J. Spinrad. Avoiding matrix multiplication. In 16th Workshop on
Graph Theory, LNCS vol. 484, LNCS 484, pages 61–71, 1990.

10. C. Nomikos, A. Pagourtzis, and S. Zachos. Minimizing request blocking in all-
optical rings. In Proceedings of the 22nd Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2003), 2003.

11. C. Nomikos, A. Pagourtzis, and S. Zachos. Satisfying a maximum number of pre-
routed requests in all-optical rings. Computer Networks: The International
Journal of Computer and Telecommunications Networking, 42(1):55–63, 2003.

11th Panhellenic Conference in Informatics 642

12. C. Nomikos and S. Zachos. Coloring a maximum number of paths in a graph.
Presented at the ICALP’97 Workshop on Algorithmic Aspects of Communication
(July 11–12, 1997, Bologna, Italy), 1997.

13. K. Potika. Maximizing the number of connections in multifiber wdm chain, ring
and star networks. In Proc. of NETWORKING 2005, LNCS 3462, pages 1465–
1470, Springer-Verlag, 2005.

14. M. Saad and Z. Luo. On the routing and wavelength assignement in multifiber
WDM networks. In Proceedings of Globecom 2002), 2002.

15. P.-J.Wan and L. Liu. Maximal throughput in wavelength-routed optical networks.
In Multichannel Optical Networks: Theory and Practice, volume 46 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 15–26.
AMS, 1998.

