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Abstract 
We introduce the Connected-Subgraphs Conflict-Free Coloring problem which has 
applications to frequency assignment in cellular networks: given a graph, assign a minimum 
number of colors to its vertices in such a way that each connected subgraph contains a vertex 
with a color that is unique among the colors of all other vertices in that subgraph. We propose 
an algorithm that achieves an optimal connected-subgraphs conflict-free coloring for trees. We 
also present an algorithm for trees of rings that produces a coloring within a logarithmic factor 
of the optimal. The coloring obtained by our algorithms has the unique-min property, that is, 
the unique color is also minimum.  
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1. Introduction 
Given an undirected graph ),( EVG , we define a vertex coloring of G  as an 
assignment of colors to the vertices such that two adjacent vertices are assigned 
different colors. Vertex coloring can be generalized to hypergraphs, where each edge 
may consist of more than two vertices, in various ways. For example, the constraint 
may be that all vertices in a hyperedge are assigned distinct colors or that in each 
hyperedge there are at least two vertices that are assigned different colors. Another 
possible generalization [Bar-Noy et al. (2006)] is the following one: 

Definition 1. A vertex coloring χ  of a hypergraph ),(= DVH  is called conflict-
free if in every hyperedge e  there exists at least one vertex which has a unique color 
among all other colors used for vertices in that hyperedge. Formally, 

)()(::: uuuueueuDe χχ ≠′→≠′∈′∀∈∃∈∀ .   

Let the  connectivity hypergraph  of a graph  be defined as ),(= DVH ),(= EVG
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follows: The set of vertices V  of H  is the same as that of  and the set of 
hyperedges  consists of all possible subsets of V  that induce connected subgraphs 
of . This gives rise to the definition of a new coloring problem on simple graphs:  
Connected Subgraphs Conflict-Free Coloring: Given a graph  find a conflict-free 
coloring of the connectivity hypergraph of G  with minimum number of colors. 

G
D

G
G

A vertex coloring of a hypergraph such that the maximum (minimum) color of any 
vertex of a hyperedge is unique (assigned to only one vertex in this hyperedge) is 
conflict-free and is called unique-max (resp. unique-min) (confict-free) coloring. The 
problems of computing a unique-min coloring is equivalent to computing a unique-
max coloring since we can replace every color  by i 1+− icmax , where  is the 
maximum color among all vertices. The problem Connected Subgraphs Unique-Min 
Coloring (Conn-UM Coloring for short) is defined by restricting the definition of  
Connected Subgraphs Conflict-Free Coloring to seeking unique-min (conflict-free) 
colorings. 

maxc

Here we study Conn-UM Coloring in trees and trees of rings and present algorithms 
that achieve appropriate coloring in trees using  colors and in trees of rings 

using  colors. Trees are a very common network topology and trees of 
rings are a network topology that provides better link failure protection than trees. 

)log( nO
)log( 2 nO

Apart from its theoretical interest, conflict-free coloring may have practical 
applications. For example (cf. [Even et al. (2002)]) consider the following scenario: 
vertices represent base stations of a cellular network interconnected through a 
backbone. Mobile client connect to the network by radio links and the reception range 
of each agent is a connected subgraph of the base stations graph. Then it may be 
desirable that in each agent's range there is a base station transmitting in a unique 
frequency, in order to avoid interference. The problem of minimizing the number of 
necessary frequencies is equivalent to  Connected Subgraphs Conflict-Free Coloring. 

Related work.  Conflict-free coloring has recently attracted considerable attention, 
due to both its theoretical and practical interest. It was first defined by Even, Lotker, 
Ron and Smorodinsky in [Even et al. (2002)] as a geometric problem with 
applications to cellular networks. Some of the problems proposed in that paper can be 
defined as hypergraph conflict-free coloring problems. In [Fiat et al. (2005)] they 
consider the online version of conflict-free coloring of a hypergraph the vertices of 
which correspond to the vertices of a chain and edges of the hypergraph are all 
subsets of V  that can be defined by intervals intersecting at least one vertex; in our 
terminology they study the online version of  Connected Subgraphs Conflict-Free 
Coloring in chains. Various other conflict-free coloring problems have been 
considered in very recent papers, see e.g. [Alon, Smorodinsky (2006), Har-Peled, 
Smorodinsky (2005)].
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Trees of rings are a useful network topology that has been the focus of several 
research papers (see [Erlebach (2001)] and references therein). Among others, the 
problem of routing and assigning wavelengths to requests in all-optical trees of rings 
is studied in [Erlebach (2001)] and a 3 -approximation algorithm is presented by 
combining the algorithms for the same problem in trees and rings [Raghavan, Upfal 
(1994)]. When the routing is given in networks with (vertex) degree at most four (i.e., 
each vertex can appear in at most two rings), there a exists a 2 -approximation 
algorithm [Deng et al. (2003)]; for arbitrary degrees, there exists an algorithm which 
uses at most L3  colors, where L  is the maximum network load, and achieves an 
approximation ratio of 2.75  [Bian et al. (2005)].

2. Definitions and Preliminaries 
The topologies we study throughout this paper are trees, rings and trees of rings. A 
graph is a ring when all its vertices V  are connected in such a way that they form a 
cycle of length ||V . A tree of rings can be defined recursively in the following 
manner (see e.g. [Erlebach (2001)]): it is either a single ring or a ring R  attached to a 
tree of rings T  by identifying exactly one vertex of R  to one vertex of T . 

 
Figure 1.  A tree of rings G  and the corresponding tree representation , 

rooted at . 
)(GT

1u

An important notion for our algorithms is that of α -separator. 
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Definition 2.  An α -separator ( 1<α ) of a graph  is a vertex u  the 
removal of which partitions  to connected components of size at most 

),(= EVG
G ||Vα .  

It is obvious from the above definition that on a general graph an α -separator does 
not always exist. It is a folklore result that in trees a (1/2)-separator always exists; 
moreover it can be found in polynomial time (see e.g. [Erlebach et al. (2003)]). In our 
algorithms we will often make use of (1/2)-separators. 

Algorithms for  Conn-UM Coloring in chains and rings: It has been shown by Even, 
Lotker, Ron and Smorodinsky in [Even et al. (2002)] that there exists an algorithm 
providing a solution with 1log +n  colors for the  Connected Subgraphs Unique-Min 
Coloring in chains. The algorithm for chains is as follows: chain },{1,2, n…  is 

colored by assigning to vertex ⎤⎡
2
n

 the “minimum”' color, excluding this color from 

future colorings and recursively solving the problem to the two parts of the chain that 
remain uncolored. It can be seen that the number of colors used is )log( nO , since at 
each step i  it suffices to solve instances of size at most half the size of the instances 
of the 1)( −i -th step. This algorithm with a small turnover can be used to solve the 
same problem in ring networks [Cheilaris (2007)] as follows: An arbitrary vertex is 
selected, colored with the “minimum” color (i.e. 1) and removed from the graph. The 
remaining graph is a chain and the previously mentioned algorithm can be used to 
color it. The total number of colors used are in this case 2log +n . 

In this paper we will make use of both the above algorithms.  

3. An Algorithm for Trees 
Regarding unique-min conflict free colorings in trees, an optimal algorithm has been 
proposed by [Iyer et. Al (1988)] (see also [Cheilaris (2007)]). We present here a 
worst-case optimal algorithm which is simpler than the one presented in [Iyer et. Al 
(1988)]. 

3.1 Analysis of the Algorithm 
Lemma 1. After the execution of Algorithm 1 in every subtree T ′  of T  the vertex of 
minimum color is unique.  

Proof.  Obviously, when a vertex has color j  smaller than the color i  of another 
vertex, it belongs to a subset jV  with smaller index than the set iV  the other vertex 
belongs to. We will thus prove that in every subtree T ′  of tree T , there exists only 
one vertex that belongs to the subset of minimum index. 
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Assume, for the sake of contradiction, that we have two vertices  that 
belong to the same partition , whereas all other vertices belong to partitions with 

greater index than 

Tuu ′∈′,

jV

j . This means that during phase j ,  and uu ′  both became 
2
1

-

separators. Note that vertices that become separators at the same phase belong to 
components of T ′  that were disconnected at the beginning of that phase (Steps 4-5). 
However, the fact that all other vertices in T ′  belong to partitions of higher index 
yields that T ′  is connected at the beginning of the j -th phase, which is a 
contradiction. □ 

Algorithm 1 

The above lemma states that in each subtree T ′  of T  the minimum indexed partition, 

say jV , contains only one vertex from T ′ , which means that this vertex was a 
2
1

-

separator before all other vertices in T ′  became a 
2
1

-separator. 

Theorem 1. The coloring obtained by Algorithm 1 is a connected-subgraphs unique-
min conflict-free coloring with at most nlog  colors.  

Proof.  Because of Lemma 1, in every subtree there exists a vertex with unique 
minimum color. As a result the coloring obtained by Algorithm 1 is indeed a unique-
min conflict-free coloring for every connected subgraph of T . 

As concerns the number of colors, it suffices to observe that after phase  the size of 
each connected component is at most . Therefore the total number phases, thus 
also the number of colors used is at most .  □ 

i
in/2

nlog
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4. An Algorithm for Trees of Rings 
In order to present our algorithm for trees of rings, we will use the notion of tree 
representation of a tree of rings. Let us first describe how to construct such a 
representation ),(=)( EVGT ′′  for a tree of rings G : For every ring of G  add a 
vertex to V ′  and consider any of these vertices u  as the root. Then set any other 
vertex v  to be child of u  if the rings corresponding to u  and v  intersect. Continue 
recursively connecting the children of the root u  with their own children until all 
vertices of V ′  are connected to )(GT . Note that in order to determine the children of 
a vertex v  we consider only vertices that have not been connected to )(GT  so far; 
therefore, the above procedure always produces a tree. An example of a tree of rings 
and its tree representation is depicted in Figure 1. 

 
Algorithm 2 

4.1 Analysis of the Algorithm 

Lemma 2.  Let G  be a tree of rings colored by Algorithm 2. Every connected 
component C  of G  that lies entirely on a ring R  of G  is colored in a unique-min 
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way.  

Proof.  First observe that C  is either a path which is part of R  or R  itself. 
Obviously, if the vertex of )(GT  that corresponds to ring R , say Rv , belongs to 
subset 1V  and C  does not contain any vertices that have been colored before the 
coloring of R , then C  has indeed been colored in a unique-min way. 

Let us now consider the case where C  contains vertices that have been colored 
before coloring R . Assume for the sake of contradiction that the minimum color 
appears in two of these vertices, say  and . Then these vertices must belong to 
rings  (respectively) with corresponding vertices  (respectively) in 

 that belong to the same subset  with 

1u 2u

21, RR
21

, RR vv

)(GT jV ij < . Therefore,  both 

became separators at the 
21

, RR vv
j -th phase of Algorithm 1 which is a contradiction 

following the same argumentation as in the proof of Lemma1. Therefore, the 
minimum color in C  is unique. □ 

Lemma 3.  The coloring obtained by Algorithm 2 is a connected-subgraphs unique-
min conflict-free coloring with )log( 2 nO  colors.  

Proof.  Every connected component C  of G  lies on a connected subset of rings, say 
kRR ,,1 … ; the corresponding vertices of these rings in )(GT , say 

kRR vv ,,
1
… , form 

a connected subtree. Let 
iRv  be the one with minimum color. This implies that 

vertices in ii RCC ∩=  have received smaller colors than any other vertex in C . 
Moreover, iC  is colored in a unique-min way, by Lemma 2. The vertex of iC  with 
the unique minimum color has also unique minimum color among all vertices in C . 

The bound on the number of colors is obtained by observing that there are at most 
 colors in  and for each of them at most nlog )(GT 2log +n  colors are used for 

coloring the corresponding rings. □ 

5. Conclusions 
We have shown a tight worst-case bound for coloring trees such that each connected 
subgraph (subtree) has a vertex with a unique minimum color. We have also extended 
our algorithm in order to work for trees of rings with a logarithmic overhead in the 
number of colors used. Our upper bound for trees of rings is )log( 2 nO  whereas at 
least )log( nΩ  colors are needed in the worst case. An open problem is whether we 

 649 
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can achieve a connected-subgraphs unique-min conflict-free coloring for trees of 
rings with )log( nO  colors. 
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