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Abstract 

In order to understand the functioning of organisms at the molecular level, we need to know 
the genes which are expressed in the organism (when, where and how). The regulation of gene 
expression is achieved through gene regulatory networks of interactions between DNA, RNA, 
proteins, and small molecules. As most gene regulatory networks of interest involve many 
components connected through positive and negative feedback interlocking loops, an intuitive 
understanding of their dynamics is hard to obtain. As a consequence, computer tools for the 
study of genetic regulatory networks will be valuable. In this paper, we present a 
computational tool for gene regulatory networks. Our results demonstrate the utility of the 
specific computational tool in the quantitative analysis of the gene regulatory networks. 
Finally, the proposed tool allows the user to change several of its parameters, in order to study 
various hypotheses concerning the analysis of the genetic network under consideration. 
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1. Introduction 
Gene networks are increasingly used as models to represent phenomena at the level of 
gene expression, and research in their construction from experimental data is rife. The 
gene network model has several applications and advantages over other approaches: 

Gene networks provide a large-scale, coarse-grained view of the physiological state 
of an organism at the mRNA level. The mRNA phenotype can be a very important 
representation of cell function, offering a much more precise description than the 
achieved with words. For instance, if the gene of a certain protein kinase is linked to 
genes involved in synthesis of a flagellum, one could conclude that it has a role on the 
chemotaxis signal transduction pathway. In this sense, gene networks (and especially 
their graphical representations) are not only capable of describing a large number of 
interactions in a concise way, but also they can represent, at a systems level, the 
dynamic properties underlying these interactions. Cells exhibit complex interacting 
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behaviour that is usually not predictable from the properties of individual system 
components alone. Gene networks provide such a system view at the level of gene 
activities [de la Fuente et al. (2002)]. Furthermore, gene networks are useful to 
rationalise phenomena in terms of how external perturbations propagate through the 
expression of genes. As a result, gene networks could be used to annotate functions in 
genomics because these networks describe in unambiguous ways the processes each 
gene is involved. Taking into account the progress in gene-expression profiling, 
elucidating gene networks is an appropriate and timely step on the way to uncovering 
the complete biochemical network of a cell type. Starting from a high-level 
description of gene regulation in cells provided by the gene network, one could 
systematically add details of the mechanism of physical interaction and expand the 
network to include explicitly proteins and metabolites. Computational tools can 
considerably aid in the process in several specific ways [Brown et al. (2002)]. 

In this paper, we present a simulation tool for modelling gene networks, namely Gene 
Networks Simulator (GNS). The proposed GNS based on data entries that is related 
with the dynamics of genetic network, calculates the changes of concentrations 
corresponding in the genes of network of proteins as interrelation of time and presents 
the corresponding graphic representations, respectively. The above characteristics, in 
combination with easy and direct access in the data entries, render GNS as a useful 
tool for the study and analysis of dynamics of various genetic networks. Furthermore, 
the presented computational tool was designed and developed as an interactive tool 
that offers automated modelling with the assistance of a dynamic and user friendly 
graphical environment. GNS user interface has been implemented using Matlab® 
enabling platform independence and possible cooperation with other known 
simulation tools aiming at adaptive reverse engineering of gene regulatory networks 
based also on Matlab®, like the one developed earlier by the authors [Mamakou et al. 
(2005)]. As a result, GNS system targets successfully not only on the analysis of 
complicated gene networks, but also on their quantitative simulation with the help of 
the annotated computational tools. In such a case, the proposed computational tool 
would be able to handle successfully some real data experiments, and to serve as a 
powerful “virtual lab” dedicated to the modelling of the genetic networks. 

2. Gene Networks Analysis 
The detailed molecular mechanisms of how the products of one gene affect 
expression of another gene are often unknown but the effect itself can be easily 
observed in gene-expression experiments. It is therefore appropriate to use genome-
wide gene-expression data to identify gene networks, an important step towards 
uncovering the complete biochemical networks of cells. Research focused on 
developing methods for this identification of gene networks from microarray data is 
now an important part of bioinformatics. 
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Cellular responses and actions are often a result of coordinated activity of a group of 
genes. Gene networks might allow genes to be ranked according to their importance 
in controlling and regulating cellular events. There is a growing indication that most 
single-gene mutations do not have marked phenotypes (most genes in genomes are 
not of ‘known function’). Most phenotypes are the result of a collective response of a 
group of genes. Gene networks help rationalise how these complex traits arise and 
which groups of genes are responsible for them. 

As mentioned above, gene networks are models that display causal relationships 
between gene activities, usually at the mRNA level, and are commonly represented 
by directed graphs (Figure 1). The nodes of the graph are genes and the directed 
edges are causal relationships between genes. A widely adopted norm is to use arrow 
tips on edges to represent positive interactions, where an increase in activity of the 
originating gene causes an increase in the target gene, and bars on edges to represent 
negative interactions, where an increase in activity of the originating gene causes a 
decrease inactivity of the target gene. Gene networks can also be represented through 
matrices [Figure 1(b)]. 
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Figure 1. (a) Graph representation of a random gene network with three genes.      
(b) Matrix representation of the same gene network 

The matrix in Figure 1(b) was obtained by applying regulatory strengths to simulated 
data [de la Fuente et al. (2002)]. Each column and row of the matrix represents one 
gene, and the matrix elements represent causal relationships. These matrices 
qualitatively, indicate positive interactions, represented by positive number, negative 
interactions, represented by negative number, and no interaction between genes 
represented by number 0. Matrices are also well suited for quantitative 
representations. In this case its elements take real values representing the strength and 
sign of the interaction. Graph representations can also express quantitative values, 
which are expressed with real numbers next to the edges to indicate the strength of the 
interaction. 

An interaction between two genes is said to be direct if it does not run through any 
other genes in the network. For example, in Figure 1(a), gene 1 directly affects gene 

 



11th Panhellenic Conference in Informatics 62 

2. Gene 1 also affects gene 4, but only in an indirect way because the effect has to run 
through gene 2. Non-additive interactions are those that require the simultaneous 
action of two or more genes (i.e. when each of them alone has no effect and only 
together do they become a cause). 

Research in gene networks has been geared towards two major goals: first, to 
understand the dynamics and design principles of gene regulation; and second, to 
reverse engineer gene networks from experimental measurements. Activities started 
with the pioneering work of Kauffman (1969) on random Boolean (gene) networks. 
More recently, the assumption that the topology of gene networks is random has been 
called into question, as more convincing arguments indicate that gene networks 
follow a ‘small-world’ topology with a power law distribution for node connectivities 
[Barabási and Albert (1999)]. 

Experimental data of mRNA levels obtained with the use of high-throughput 
technologies is now abundant. These are snapshots of the molecular state of cell 
populations at the transcript level and are rich in information about gene networks. 
This process of establishing cause–effect relationships between genes on the basis of 
observed expression levels is referred to as ‘reverse engineering’. Several approaches 
have been proposed for inferring gene networks from experimental data. A popular 
method used for gene-expression data analysis, sometimes called ‘guilt by 
association’, assumes that genes with similar expression patterns are functionally 
related to each other. Other methods are based on more sophisticated statistical 
analysis, including Bayesian belief networks and pair-wise correlation methods. 
Several methods exist that rely on the simplification of considering genes to be either 
expressed at a fixed rate, or not at all [Kauffman (1969)]. These methods also 
consider time to be a discrete process, and have rules that govern whether genes are 
on or off at a given time step, based on the values taken by the genes at the previous 
time step. Boolean approaches suffer from their inability to capture intermediate 
levels of gene expression, and can easily generate spurious results owing to their 
discrete nature [Sirakoulis et al. (2006)]. 

More challenging, but potentially more accurate representations of gene networks use 
continuous functions, in which expression levels are allowed to take any positive 
value. These approaches are mathematically implemented by difference or differential 
equations, either linear or nonlinear. In linear additive models, each interaction is 
characterized by one parameter that is positive for activation, negative for inhibition, 
or zero for no interaction. More realistic, but also more difficult approaches use 
nonlinear kinetics to represent the rates of transcription, such as neural network-like 
sigmoidal functions [Wahde and Hertz (2000)]. In both cases, nonlinear optimization 
methods are used to fit the model equations to the observed data. The use of nonlinear 
kinetics is cumbersome compared to linear or Boolean methods since it requires 
larger amounts of data. However, it has the advantage of much greater predictive 
power. 
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A graph theoretical approach has been proposed to analyse gene-expression data 
obtained from null mutants [Wagner (2001)]. This method is promising because it 
uses the most abundant type of data currently available. Unfortunately, it would not 
be possible to distinguish between different gene networks of the same class, so the 
most parsimonious network must be adopted [de la Fuente et al. (2004)]. However, 
evidence from molecular biology suggests that the underlying gene networks will not 
necessarily be parsimonious. In addition, this approach is only applicable to acyclic 
graphs. Finally, a method based on systematic perturbation of gene transcription rates 
and microarray measurements to infer the underlying gene networks was proposed 
[de la Fuente et al. (2002)]. The method itself is based on developments from 
metabolic control analysis, particularly co-response analysis and regulatory strengths. 
Briefly, the aforementioned method is capable of identifying and quantifying direct 
interactions between genes, requiring several experiments equal to the number of 
genes considered in the network analysis. 

A conclusion drawn from the above discussion is that many more experiments are 
needed to infer gene networks with high accuracy. Furthermore, it is obvious that 
gene networks are also a good way to describe function unequivocally, and that they 
could be used for genome functional annotation; and finally, the ability to create gene 
networks from experimental data and use them to reason about their dynamics and 
design principles will increase our understanding of cellular function. It is now clear 
that the investigation, analysis and simulation of gene regulatory networks requires 
computational tools specific to the task. 

3. The Proposed Simulation Tool 
The proposed computational tool, namely GNS, can be used for gene network 
simulation comprising the computational inference of pathway interactions and 
network logical organization directly from gene expression data as given. GNS user 
interface has been implemented using Matlab® GUI facilities, enabling interactive 
simulation. This interface is shown in Figure 2. 

In more details, GNS analyses gene networks, presenting the change of proteins 
concentrations that are produced at the transcription and translation of the examined 
genes, as time depended. Furthermore, beyond the graphical presentation of the time 
dependence of the proteins concentration, GNS presents also in its output an 
analytical table of the concentration values of all proteins at each time step in order to 
provide a quantitative representation of the gene network under question. To 
accomplish network analysis, four different inputs are needed by the GNS user. More 
specifically, these inputs are: An one dimensional vector representing the initial 
concentrations of the proteins corresponding to the genes of the gene network under 
question; A vector that would include all the initial instant rates of the concentration 
changes of the proteins corresponding to their initial concentrations; A correlation 
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matrix identical to the one depictured in Figure 1(b) that would indicate the 
dependence weights among the genes; and, finally, a matrix of thresholds that would 
comprise the proteins concentration values above which the effect of each gene (in 
the protein of which corresponds this concentration) on an other gene is expressed. It 
is evident that the threshold and correlation matrixes foreknowledge results in the 
precise knowledge of the gene network itself. In order to proceed with reverse 
engineering, the user of the simulation tool should have already composed and 
restructured the examined gene network with the help of a reverse engineering tool 
such as the one presented in [Mamakou et al. (2005)]. The aforementioned 
computational tool, based on Genetic Algorithms (GAs), is able to predict with 
observed data the regulatory pathways that are represented as influence matrix. 

In previous Sec., the gene networks were represented through cross-correlation 
matrices. Each element (i, j) of this matrix annotates the dependence of gene j from 
gene i. In the presented tool, these elements constitute, not only simple metric of 
genes dependence, but also the rate of change of gene j due to the effect of gene i. 
This speed has units of concentration per time. In general, the rate of the 
concentration change for each protein depends on the algebraic sum of the 
corresponding column elements found in the correlation matrix. However, the way 
the elements are chosen for this sum, is defined directly by the thresholds matrix. As 
mentioned before, in correlation matrix reference, the concentration of protein of gene 
j is altered due to the effect of gene i. This actually happens when the concentration of 
protein of gene i exceeds some limit or threshold. Only then the effect of gene i is 
considered in the total rate of change of protein j concentration based on the (i, j) 
couple. In the model that was developed in the frame of this work, the effect of gene i 
begins at the moment when the corresponding threshold is exceeded and remains 
active, even if the concentration of protein of gene i results in values lower than the 
aforementioned threshold. This effect terminates only when the concentration of 
protein of gene j fades to zero. 

In order to produce the vector that would include all the initial instant rates of the 
concentration changes of the proteins corresponding to their initial concentrations, the 
user of the system should proceed with two concentration measurements. These two 
measurements should be taken in brief time so that the possibility of thresholds 
extension during these measurements would be negligible. In this way it would be 
rather easy to compute the average rate of change of each protein concentration 
during the two measurements. This average rate would be equal to the rate of change 
at the last, second, measurement. Finally, the following steps should be followed in 
order to establish high accuracy concentration measurements. After measuring the 
concentrations of proteins Ci at time moment 0 (first measurement), the differences 
Tij–Ci are calculated (where Tij are the elements of the thresholds matrix) and as a 
result the minimal differences for each protein are assigned. Furthermore, for each 
protein, all the positive elements of the corresponding column of cross-correlations 
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matrix are added in order to find the biggest theoretical positive rate that can be 
assigned in each protein. Then, the minimal differences are divided by the 
corresponding biggest rates, and, therefore, result in the minimal theoretical times of 
threshold achievement for each protein. The smallest one of these moments will be 
the theoretical global minimum time of threshold achievement of the examined 
network (and consequently the worst case). Finally, the time that would result 
between the two measurements, should be in any case smaller than this minimal 
theoretical time so as to eliminate the existence of some intermediate threshold. 

 
Figure 2. Graphical representation of the GNS simulation results 

The user of GNS is able to insert and change any one or all of the above input 
parameters until the GNS better depicts the examined network. More specifically, by 
pressing the “Initial Concentration” button the user inserts the aforementioned initial 
concentrations of the proteins corresponding to the genes of the gene network 
chromosome. The user can enter his/hers initial instant speeds of the concentration 
changes of the proteins corresponding to their initial concentrations by clicking on the 
“Initial rate” button and entering the sequence of speed matrix as he/she desires to the 
corresponding matrix. With the usage of button “Relative” the user enters his/hers 
correlation matrix that would indicate the dependence weights between the examined 
genes and by clicking on “Thresholds” button he/she can insert the aforementioned 
thresholds matrix of the examined network. More information about the suitability of 
the form of the entered matrixes can be found in the empty fields just below the axes 
of the graphical representation. Finally, he/she can set simulation time by entering 
her/his choice in the field “Simulation time”. The simulation time should be in the 
same units as found in the rates of concentration changes. After setting all the 
simulation parameters, the computational tool is activated by clicking the button 
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“Simulate” on the bottom-right of the interface. Figure 2 shows simulation results for 
the gene network of Figure 1(a). 

The aforementioned GNS simulation results were produced with the help of an 
algorithm for the computation of proteins concentrations. More specifically, the scope 
of this algorithm is to compute the proteins concentrations changes corresponding to 
the network genes during the simulation time. Although simulation time is discrete, 
the computation is continuous. Between each two simulation time steps, a time 
interval is setting. The algorithm is able at the end of this interval to compute the 
vector of concentrations as well as the vector of rate variations of the corresponding 
concentrations. At each time step, the algorithm checks out if some proteins due to 
their rate change, overshoot their thresholds. The time needed for a protein to 
overshoot the corresponding threshold results from the following equation: 

Time to threshold = (threshold – present concentration) / concentration rate (1) 

From all the proteins that will succeed to overshoot the corresponding threshold the 
first one to succeed will be responsible for the change of the rate vector. It is evident 
that due to the aforementioned change, the rest of the proteins concentrations should 
be recalculated to determine if they still overshoot the corresponding thresholds or 
probably some new ones, not close enough at the previous time steps, are able to do 
so. 

Figure 3(a) shows simulation results produced by the GNS for a gene network of five 
genes. It is obvious that in the presented example most of the genes are by themselves 
suppressed. Most genes in gene networks will have a negative effect on their own 
concentration because the degradation rate of their mRNA is proportional to its 
concentration. The simulation results produced by the proposed tool after 80 time 
steps are shown in Figure 3(b). 

In order to establish the ability of GNS tool to interact instantly with the slightest 
differences in its input we present another example. In this case, a slightly different 
gene network is shown in Figure 3(c). As shown in Figure 3(a) the auto calibration of 
gene numbered 1 in order to suppress itself the corresponding protein produced by it, 
is missing. As a result the expression of gene 1 is directly related to gene 2. The only 
difference between gene networks (a) and (c) is induced by the lack of any possible 
influence of gene 2 to the expression of gene 1. All other nets parameters, meaning 
their input matrices as given above, remain exactly the same. As shown in Figure 
3(d), the examined gene network is rather unstable because of the continuous 
increment in protein 1 concentration. Of course, the same could result if there the 
examined network was the same as before, but some other changes were appeared in 
user inputs, i.e. a slight modification of the thresholds matrix regarding gene 2 auto 
suppression threshold value. 
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Figure 3. (a) Random gene networks of five genes. (b) Simulation results of GNS tool 
after 80 time steps. (c) The same random gene network of five genes without the 

suppression arc between genes 1 and 2. (d) Simulation results of GNS tool after 30 
time steps that show the instability of the examined gene network. 

4. Conclusions 
Gene networks are phenomenological models of how changing activity of genes 
affects the activity of other genes. Knowledge about gene networks might provide 
valuable information and lead to new ideas for treating complex diseases. Taking into 
account the progress in gene-expression profiling, elucidating gene networks is an 
appropriate and timely step on the way to uncovering the complete biochemical 
network of a cell type. On the other hand, as most gene regulatory networks of 
interest involve many components connected through interlocking positive and 
negative feedback loops; an intuitive understanding of their dynamics is hard to 
obtain. As a consequence, computer tools for the study of genetic regulatory networks 
will be indispensable. In this paper we presented a computational tool, namely GNS, 
for the quantitative analysis of the gene regulatory networks. The proposed tool has 
an automated user-friendly interface and enables the user to change several of its 
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parameters, in order to study various hypotheses concerning the simulation of the 
genetic network under consideration. Furthermore, the efficiency of GNS increases 
because of its high compatibility with previously developed computational tools able 
to compose and reconstruct gene networks. These gene network reverse engineering 
tools comprise the computational inference of pathway interactions and network 
logical organization directly from gene expression data (e.g. RNA and protein 
concentrations) exhibited by the organism or biological system of interest. As a result, 
the proposed computational tool would be able to handle successfully some real data 
experiments, and to serve as a powerful “virtual lab” dedicated to the modelling of the 
genetic networks. 
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