
OPERAS for Space:
Formal Modelling of Autonomous Spacecrafts

Ioanna Stamatopoulou1, Petros Kefalas2, Marian Gheorghe3

1SEERC, 17 Mitropoleos Str, Thessaloniki, Greece, istamatopoulou@seerc.org
2City College, Dept. of Computer Science, 13 Tsimiski Str, 54624

Thessaloniki, Greece, kefalas@city.academic.gr
3The University of Sheffield, Dept. of Computer Science, Regent Court,

211 Portobello Str, Sheffield S1 4DP, UK, marian@dcs.shef.ac.uk

Abstract
We present OPERAS, a formal method that facilitates the development of biologically
inspired multi-agent systems exhibiting emergent behaviour through self-organisation. We
describe how a particular version of this method, namely OPERASXC, could employ and
integrate the most prominent characteristics of finite state machines and biological
computation systems, such as X-machines and P Systems respectively. We apply this method
to formally model a system reported by NASA, which consists of autonomous spacecrafts in a
mission for exploring asteroids.

1 Introduction
Throughout the past years, there has been an increasing interest towards biological
and biologically inspired systems, particularly with the intent to create software
systems that model the behaviour of their biological counterparts (ants, termites, bees,
flocks of birds, tumours etc). The motivation behind the development of such
software systems varies. In our discipline, the understanding of how nature deals with
various problematic situations has inspired problem solving techniques that are
applicable to a wide range of situations. Swarm Intelligence and Ant Colony
Optimisation techniques have been successfully applied to robotics [Dorigo et al.,
2004] and DNA computing [Paun et al., 1998]. Other unconventional, biology
inspired computational models [Gheorghe, 2005] can solve NP-complete problems.

These systems can be directly mapped to multi-agent systems (MAS) by considering
each entity as an agent. The overall system’s behaviour is merely the result of the
agents’ individual actions, their interactions among them and the environment. This
also points to self-organisation and how collective behavioural patterns emerge as a
consequence of individuals’ local interactions in the lack of knowledge of the entire
environment or global control.

The more complex a MAS is, the more difficult to ensure correctness at the modelling
level. Correctness implies that all desired properties are verified at the end of the

11th Panhellenic Conference in Informatics 70

modelling phase and that an appropriate testing technique is applied to prove that the
implementation has been built in accordance to the verified model. Not all agent-
engineering paradigms provide such means and it is accepted that the most reliable
means for ensuring correctness lie within the field of formal methods that can, by
nature, provide the necessary verification and testing techniques.

Another key aspect that has to be dealt with at the modelling level is the dynamic
nature of MAS and how their structure is constantly reconfigured. By ‘structure’ we
imply (i) the number of the agents, and (ii) either their physical placement in space or,
more generally, the structure that is dictated by the communication channels among
them. Most modelling methodologies assume a fixed, static structure that is not
realistic since in a dynamic MAS, communication between two agents may need to be
established or ceased at any point and also new agents may appear in the system
while existing ones may be removed. One additional issue that the inherent dynamic
nature of these systems raises has to do with distinguishing between the modelling of
the individual agents (behaviour) and the rules that govern the communication and
evolution of the collective MAS (control). By ‘control’ we do not imply central
control, as this would cancel any notion of self-organisation. Rather, we refer to the
part of the agent that takes care of non-behavioural issues. A modelling method that
allows such a distinction would greatly assist the modeller by breaking down the
work into two separate and independent activities.

In this paper we propose a new formal approach, called OPERAS, that facilitates the
development of MAS of the nature of many biology and biology-inspired systems.
The next section provides a brief description of a representative case study from the
class of similar MAS modelling problems. Section 3 introduces OPERAS formal
definition, followed by a formal model for the case problem in question, in Section 4.
Finally, Section 5 discusses issues arising from our attempt and concludes the paper.

2 Autonomous Spacecrafts for Asteroid Exploration
A representative example of a system, which clearly possesses all the aforementioned
characteristics of a dynamic MAS is the NASA Autonomous Nano-Technology
Swarm (ANTS) system [Rouf et al., 2004]. The NASA ANTS project aims at the
development of a mission for the exploration of space asteroids with the use of
different kinds of unmanned spacecrafts. This case is interesting because there has
been a thorough investigation on how formal methods can ensure the safety critical
nature of the mission. Since correctness of the system has been identified as a primary
requirement, work on the particular project included research on and comparison of a
number of formal methods [Rouf et al., 2004].

The ANTS mission uses of three kinds of unmanned spacecrafts: leaders (or rulers or
coordinators), workers and messengers (Fig. 1). The leaders are the spacecrafts that
are aware of the goals of the mission and have a non-complete model of the

Bioinformatics 71

environment. Their role is to coordinate the actions of the spacecrafts that are under
their command but by no means should they be considered to be a central controlling
mechanism, as all spacecrafts’ behaviour is autonomous. Depending on its goals, a
leader creates a team consisting of a number of workers and at least one messenger.
Workers and messengers are assigned to a leader upon request by (i) another leader, if
they are not necessary for the fulfillment of its goals, or (ii) earth (if existing
spacecrafts are not sufficient in number to cover current needs, new spacecrafts are
allocated to the mission).

L1 L2

W4

W4
W1

W2 W3

M1

M2

W6

L3

EARTH

ASTEROID

M3

Figure 1. An instance of the ANTS mission, L: Leader, W: Worker, M: Messenger.

A worker is a spacecraft with a specialised instrument able, upon request from its
leader, to take measurements from an asteroid while flying by it. It also possesses a
mechanism for analysing the gathered data and sending the analysis results back to its
leader in order for them to be evaluated. This in turn might update the view of the
leader, i.e. its model of the environment, as well as its future goals.

The messengers, finally, are the spacecrafts that coordinate communication among
workers, leaders and the control centre on earth. While each messenger is under the
command of one leader, it may also assist in the communication of other leaders if its
positioning allows it or conditions demand it.

What applies to all types of spacecrafts is that in the case that there is a
malfunctioning problem, their superiors are being notified. If the damage is
irreparable they need to abort the mission while on the opposite case they may “heal”
and return back to normal operation.

11th Panhellenic Conference in Informatics 72

3 OPERAS: Formal Modelling of Multi-Agent Systems
In an attempt to formally model each individual agent as well as the dynamic
behaviour of the overall system, we need a formal method that is capable of
rigorously describing all the essential aspects, i.e. knowledge, behaviour,
communication and dynamics. Some formal methods have the means to efficiently
define the data structures of a system and the operations employed to modify the
values in these structures (Z, VDM). Others are better in describing the control over a
system’s states (FSM, Petri Nets) and yet others put emphasis on the concurrency and
communication of processes (CCS, CSP). Finally, new computation approaches
inspired by biological processes in living cells, introduce concurrency as well as
neatly tackle the dynamic structure of multi-component systems (P Systems, Brane
Calculus, Gamma, Cham, MGS) [Banatre et al, 1990; Berry et al, 1992; Paun, 2000].
An interesting comparison of various formal methods for the verification of emergent
behaviours in swarm-based systems is reported [Rouf et al., 2004].

3.1 OPERAS
Definition 1. A Dynamic Multi-Agent System is defined by the tuple
(O, P, E, R, A, S) where:
• the set of rules, O, that define how the system structure evolves by applying

appropriate reconfiguration operators;
• the set of percepts, P, for the agents;
• the environment’s model / initial configuration, E;
• the relation, R, that defines the existing communication channels;
• the set of participating agents, A, and
• the set of definitions of agent types, S, that may be present in the system.
More particularly:
• the rules in O are of the form condition⇒action where action involves the

application of one or more of the operators that create/remove a communication
channel between agents or introduce/remove an agent into/from the system;

• P is the union of the set of percepts of all participating agents;
• R: A×A with (Ai, Aj)∈R, Ai,Aj∈A, i.e. agent Ai may send messages to agent Aj;
• A={A1, …, An} where Ai is a particular agent defined in terms of its individual

behaviour and its local mechanism for controlling reconfiguration;
• Sk = (Behaviourk, Controlk) ∈S, k∈Types where Types is the set of identifiers of

the types of agents, Behaviourk is the part of the agent that deals with its
individual behaviour and Controlk is the local mechanism for controlling
reconfiguration; each participating agent Ai of type k in A is a particular instance
of a type of agent: Ai = (Behk, Ctrlk)i (Fig. 2).

Bioinformatics 73

Regarding the modelling of each type of agent Sk, there are more than one options to
choose from in order to specify its behavioural part and the same applies for its
control mechanism. However, we have long experimented with two formal methods,
each one appropriate for the behaviour and control respectively, namely
Communicating X-machines and Population P Systems. A detailed description of
how the two approaches are used in MAS modelling can be found in [Kefalas et al.,
2005; Stamatopoulou et al., 2005].

M2

M1

M3

L2

L1

L3

W1

W2
W3

W5

W6

M2

M1

M3

L2
L1

L3

W1

W3 W4

W5

W6

ASTEROIDASTEROID

Behaviour

ControlW4

(a) (b)
Figure 2. (a) An instance of MAS structure corresponding to ANTS in Fig.1 with an
OPERA agent (W4) consisting of separate Behaviour and Control components. (b) A
change in the structure of MAS after possible events (e.g. destruction of worker W2,

leader L1 employs worker W6 etc.).

X-machines (XM), a state-based formal method [Eilenberg, 1974], are considered
suitable for the formal specification of a system’s components. Stream X-machines,
in particular, were found to be well suited for the modelling of reactive systems.
Since then valuable findings using the X-machines as a formal notation for
specification, communication, verification and testing purposes have been reported
[Eleftherakis, 2003; Holcombe and Ipate, 1998; Kefalas et al., 2003]. An X-machine
model consists of a number of states and also has a memory, which accommodates
mathematically defined data structures. The transitions between states are labeled by
functions. In addition to having stand-alone X-Machine models, communication is
feasible by redirecting the output of one machine’s function to become input to a
function of another machine. The system structure of Communicating X-machines is
defined as the graph whose nodes are the components (CXM) and edges are the
communication channels among them.

11th Panhellenic Conference in Informatics 74

One the other hand, Population P Systems (PPS) [Bernandini et al., 2004] is a
collection of different types of cells evolving according to specific rules and capable
of exchanging biological/chemical substances with their neighbouring cells. PPS
provide a straightforward way for dealing with the change of a system’s structure,
however, the rules specifying the behaviour of the individual cells in a PPS are more
commonly of the simple form of rewrite rules which are not sufficient for describing
the behaviour of the respective agent a cell may represent.

We may now move on to a more formal OPERAS definition, namely OPERASXC that
uses both a CXM and PPS-cell-inspired construct for specifying each of the agents.
An abstract example of an OPERASXC model with two agents is depicted in Fig. 3.

Ai Aj Ci

CXMi CXMj

Cj

Figure 3. An abstract example of an OPERASXC consisting of two agents.

For the following, we consider that the computation state of a CXM describing the
behaviour of an agent is a 3-tuple Q×M×Φ that represents the state the XM is in (qi),
its current memory (mi) and the last function that has been applied (φi).

Definition 2. A Dynamic Multi-Agent System OPERASXC is defined as the tuple
(O, P, E, R, A, S) where:
• the rules in O are of the form condition⇒ action where condition is a conjunction

of (q, m, φ) and action involves the application of one or more of the operators
attachment ATT, detachment DET, reconfiguring the communication channels
among existing CXMs and generation GEN, destruction DES, generating or
destroying an agent in the system. Additional communication rules also exist, as
in PPS, so that there is indirect communication (through the environment)
between the control cells;

• P = PA∪ PC is the set of percepts of all participating agents, where PA=Σ∪...∪Σt is
the set of inputs perceived by the XMs and PC = (Q1 ×M1 ×Σ1) ∪...∪  (Qt ×Mt ×Σt)
is the set of objects (alphabet) of the PPS (t being the number of types of agents);

• E = {(q, m, φ)i | 1≤i≤n, q∈Qi, m∈Mi, φ∈Φi} holding information about the initial
computation states of all the participating agents;

• R: CXM×CXM (CXM: the set of CXMs that model agent behaviour);

Bioinformatics 75

• A = {A1, …, An} where Ai = (CXMk, Ck)i is a particular agent of type k defined in
terms of its individual behaviour (CXMk) and its local mechanism for controlling
reconfiguration (Ck). The control cell is of the form Ck = (wi, oi) where wi is the
multi-set of objects it contains and oi∈O is the set of rules that correspond to the
particular type of agent, k;

• S = {(XTk,Ck) | k∈Type}, where XTk is an XM type (no initial state and memory).

3.2 Computation in OPERASXC

In this model, each control cell implicitly knows the computation state (q, m, φ) of the
underlying XM that models behaviour. Additionally, environmental input is directed
straight to the agent’s behavioural part. More particularly in each computation cycle:
• An input σ triggers a function of the behaviour CXM and the updated information

about the agent’s computation state (q', m', φ') is updated in the control cell;
• A copy of the object (q', m', φ') is placed in the environment for other agents in

the local environment to have access to it;
• Objects from the environment representing the computation states of

neighbouring agents are imported;
• Finally, all the reconfiguration rules in O of the type of the particular cell are

being checked and if necessary applied, in any defined order.
Since the model follows the computation rules of a CXM system (triggered by the
behaviour component’s input, asynchronously for the different participating agents),
computation of the behaviour-driven version of OPERASXC is asynchronous. In
another version of OPERASXC, the computation is control-driven (synchronous).

4 OPERASXC Model for Autonomous Spacecrafts in ANTS
The leader agent L can be modelled as an X-machine, whose state transition diagram
FL is depicted in Fig. 4. QA = {Processing, Malfunctioning, Aborting} is the set of
states a leader may be in. Its memory contains information about its current status (i.e.
position and operational status), the IDs and statuses of the messengers and workers
under its command, the analysis results up to this point, its current model of the
surroundings as well as its goals:

ML: Status×P(M×status)×P(W×status)×AnalysisResults×Model×Goals

where Status: (Z×Z×Z) ×{QL} (Z being the set of positive integers), P stands for
powerset, M is the set of messengers, W is the set of workers and so forth.

The input set for the leader X-machine is: ΣL= {abrt, problem, remedy}  ∪
(W×Status) ∪ (W×Measurements) ∪ ({request, requestFromEarth, requestedFor}×
Instrument), where abrt, problem, remedy, request, requestedFor are constants and
Instrument) is the set of containing the different types of installed instruments of the
workers. The output set ΓL is a set of informative messages.

11th Panhellenic Conference in Informatics 76

.

Malfunctioning

Processing

Aborting
abort

changeMessenger requestWorker

receiveWorker

changeGoal

receiveMeasurements

abort

rejectRequestForWorker

malfunction
heal

M = (status, messengers, workers, analysisResults, model, goals)

requestWorkerFromEarth

acceptRequestForWorker

Figure 4. State transition diagram of the Leader X-machine.

Indicatively, some of the functions in the ΦL set are:
acceptRequestForWorker((requestedFor,instr),(_,_,workers,_,_,_)) =
('reassigned worker', (_,_,workers',_,_,_))
if (wi, (_,_,instr))∈workers and isWorkerNeeded(wi) == false
where workers'=workers \ (wi, (_,_,instr))

receiveWorker(wi,(_,_,workers,_,_,_))= ('received worker', (_,_,workers∪(wi),

The models of the worker and messenger agent are similarly created but are not
included in this paper due to space restrictions. According to OPERASXC, for the
definition of the given system as a dynamic MAS, we need to assume an initial
configuration. To keep the size restricted for demonstrative purposes, let us consider
an initial configuration that includes one leader L1, one messenger M1 and two
workers W1, W2.
The set O contains the five reconfiguration rules regarding (i) the generation of a new
worker when the control centre on earth decides it should join the mission, (ii) the
destruction (i.e. removal from the system) of any kind of agent in the case it must
abort the mission, (iii) the establishment of a communication channel between a
leader and a newly assigned to it worker and vice-versa, and (iv) the removal of a
communication channel between a leader and a worker when the latter is being
reassigned to a new leader. More particularly O contains the following rules:

(_,_,requestWorkerFromEarth)Ai ∧ earthHasAvailableWorkers()==true
⇒GEN(Wi,q0i,m0i,ANTS)A

(aborting,_,_)*this⇒DES(*this,ANTS)* where * stands for any type of agent.
(_,(_,_,Li,_,_,_,_),leaveCurrentLeader)Wi ⇒DET(Wi,Li,DET(Li,Wi,ANTS))W
(_,(_,_,newLeader,_,_,_,_),joinNewLeader)Wi

⇒ATT(Wi,newLeader,ANTS)W

Bioinformatics 77

(_,(_,_,newWorker::workers,_,_,_),receiveWorker)Li

⇒ATT(Li,newWorker,ANTS)L
(_,(_,_,newWorker::workers,_,_,_),receiveWorkerFromEarth)Li

⇒ATT(Li,newWorker,ANTS)L

The set of percepts of all agents is: P = ΣL×ΣW×ΣM× (QL×ML×ΦL) × (QW×MW×ΦW) ×
(QM×MM×ΦM). Because all reconfiguration rules per type of agent rely only on
conditions dependent on the computation state of the agent itself, the model needs not
to communicate computation states among the different agents and there are,
therefore, no additional communication rules.
Since in the assumed initial configuration we consider to have one group of
spacecrafts under the command of one leader, all agents should be in communication
with all others and so: R={(L1,W1), (L1,W2), (L1,M1), (M1,L1), (M1,W1), (M1,W2),
(W1,L1), (W1,M1), (W2,L1), (W2,M1)}. The set that contains all the agent instances
becomes: A = {L1, W1, W2, M1)} where L1 = (XML1, CL1), Wi = (XMWi, CWi), 1≤i≤2, and
M1 = (XMM1, CM1). Finally, the set S that contains the “genetic codes" for all agent
types is: S = {(XML, CL), (XMW, CW), (XMM, CM)} where XML, XMW, XMM are the X-
machines defined previously.

5 Conclusions and Further Work
We presented OPERAS, a formal method framework, with which one can model the
behaviour and the control of an agent as separate components as well as formally
describe the changes that occur in the structure of a dynamic multi-agent system. We
employed Communicating X-machines and ideas from Population P Systems to
define OPERASXC, a particular instance of the framework. These gave us the
opportunity to combine the advantages that X-machines have in terms of modelling
the behaviour of an agent with the advantages that Population P Systems have in
terms of defining the control over the structure of the system. We have experimented
with modelling of various biological and biologically inspired systems, and in this
paper, we presented the OPERAS model of autonomous spacecrafts.

We continue the investigation of how OPERAS could employ other formal methods
that might be suitable for this purpose. In the near future, we will focus on theoretical
aspects of the framework, in order to demonstrate its usefulness towards developing
correct systems (i.e. complete testing and verification) as well as to consider various
types of transformations that could prove its power for formal modelling.

11th Panhellenic Conference in Informatics 78

References
Banatre, J. and Le Metayer, D. (1990). The gamma model and its discipline of

programming. Science of Computer Programming, 15:55–77.
Bernandini, F. and Gheorghe, M. (2004). Population P Systems. Journal of Universal

Computer Science, 10(5):509–539.
Berry, G. and Boudol, G. (1992). The chemical abstract machine. Journal of

Theoretical Computer Science, 96(1):217–248.
Dorigo, M., Trianni, V., Sahin, E., Gross, R., Labella, T. H., Baldassarre, G., Nolfi,

S., Deneubourg, J. L., and Mondada, F. (2004). Evolving self-organizing behavior.
Autonomous Robots, 17(2-3):223–245.

Eilenberg, S. (1974). Automata, Languages and Machines. Academic Press.
Eleftherakis, G. (2003). Formal Verification of X-machine Models: Towards Formal

Development of Computer-based Systems. PhD thesis, Department of Computer
Science, University of Sheffield.

Gheorghe, M., editor (2005). Molecular Computational Models: Unconventional
Approaches. Idea Publishing Inc.

Holcombe, M. and Ipate, F. (1998). Correct Systems: Building a Business Process
Solution. Springer-Verlag, London.

Kefalas, P., Eleftherakis, G., and Kehris, E. (2003). Communicating X-machines: A
practical approach for formal and modular specification of large systems. Journal
of Information and Software Technology, 45(5):269–280.

Kefalas, P., Stamatopoulou, I., and Gheorghe, M. (2005). A formal modelling
framework for developing multi-agent systems with dynamic structure and
behaviour. In Pechoucek, M., Petta, P., and Varga, L. Z., editors, Lecture Notes
in Artificial Intelligence, No. 3690, pp 122–131. Springer Verlag.

Paun, G. (2000). Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143. Also circulated as a TUCS report since 1998.

Paun, G., Rozenberg, G., and Salomaa, A. (1998). DNA Computing: New Computing
Paradigms. Springer-Verlag.

Rouff, C., Vanderbilt, A., Hinchey, M., Truszkowski, W., and Rash, J. (2004).
Properties of a formal method for prediction of emergent behaviors in swarm-
based systems. In Proceedings of the Second International Conference on
Software Engineering and Formal Methods (SEFM’04), pages 24–33.

Stamatopoulou, I., Kefalas, P., and Gheorghe, M. (2005). Modelling the dynamic
structure of biological state-based systems. BioSystems, No 87, pp.142-149

