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Abstract 

 
            The present paper deals with the problem of Byzantine Agreement in a synchronous 
network in the presence of a polynomially bounded and malicious adversary. There are n  
processors, which want to agree on a common value, but  of them might be corrupted by an 
adversary, who tries to make the protocol fail. We present a Monte Carlo type protocol, which 
is optimal in fault tolerance (

t

1/2−n  faults may occur) and in Round Complexity ( ). 

Moreover, the Bit Complexity of this protocol is  (where  the length of a 
signature), which is the lowest achieved until now for such a protocol. Until now the most 
efficient Monte Carlo protocols either required  bits during interaction or tolerated 
at most  corrupted players.  
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1. Introduction 

 The problem of Byzantine Agreement was introduced by Pease, Shostak and 
Lamport in.[PSL80] It deals with the problem of Consensus, where  processors 
want to agree on a common value, despite the presence of an adversary, who corrupts 

 of them and wants to confuse them. An equivalent alternative is the problem of 
Broadcast, where a processor wants to distribute his value to  processors, but the 
latter want to ensure that they all received the same value. Many protocols have been 
proposed since then providing different kinds of security. 

n

t
n

It has been proved that any deterministic protocol can tolerate at most  
bad players and requires at least 

/3< nt
1+t  rounds. The most known protocols for this 

setting are those proposed in [BGP92] and [CW92], where the total number of bits 
needed during interaction is optimal, namely . The protocol of [FM88] is a Las 
Vegas protocol, which may run in a constant expected number of rounds, but it is also 
resilient against  players and requires  bits of communication. In the 
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cryptographic setting, the Consensus protocol proposed in [DS83] is deterministic 
and, although it is optimal in resiliency ( ), it requires /2< nt 1+t  rounds and a Bit 
Complexity of  (where  the length of a digital signature) and the latter 
is not optimal. If we want a protocol resilient against more than  corrupted 
players, then the lower bound for Bit Complexity is , which also implies 
that a signature scheme is compulsory. 

|)ó|( 3nO |ó|
1/3−n

|)ó|( 2nO

The Consensus protocol proposed here belongs to the cryptographic model and 
assumes that the adversary is polynomially bounded. It is a Monte Carlo type 
protocol, because it allows a negligible probability of error. The protocols of [Rab83] 
and [Tou84] work also for the same model, however, the former is less resilient, 
while the latter requires a higher Bit Complexity. The present protocol is optimal in 
resiliency, tolerating up to  players and runs in a constant number of rounds. It 
also requires a in bit complexity of , which means that it is faster and less 
demanding than the previous protocols of the cryptographic Monte Carlo setting. 

/2< nt
|)ó|( 2nO

The protocol presented here uses techniques from [CKS00], namely the 
Common Coin protocol and the threshold signature scheme from [Sho00]. (The 
protocol of [CKS00] works for an asynchronous network, while our protocol is 
designed for synchronous networks). As a consequence, our protocol requires a Third 
Trusted Party once and for all, in contrast to those in [Rab83] and [Tou84], which 
require a trusted dealer to predistribute some data for each implementation. 

 
2. Preliminaries 
 

2.1 Byzantine Agreement 
 

Let us see, now, the exact definition of Byzantine Agreement in both cases of 
Consensus and Broadcast. In the literature, the term Byzantine General is sometimes 
used for the case of Broadcast (there is a general, who wants to send a message to all 
his lieutenants, but the latter want to be sure, that they all receive the same message), 
therefore we use the term Byzantine Agreement only for the case of Consensus: 

  Definition 1 (Broadcast:) Let  be a set of  processors,  
be a finite domain and 

),,(= 1 nPPP … n D
PPs ∈  be the sender. Then we say, that  is a Byzantine 

General protocol among processors in 
Ð

P  with values in , where  has as input a 
value  and all players finally decide on a value 

D sP
Dxs ∈ Dyi ∈ , if it satisfies the 

following conditions:  
  
     • Validity: If the sender is honest, then all correct players will decide on ;  sx
     • Consistency: If  is a correct player, who decided on value , and, if  iP iy jP
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is also a correct player, then he also will decide on .  ij yy =
     • Termination: All players will eventually terminate the protocol;  
    Definition 2 (Consensus:) Let  be a set of  processors,  

be a finite domain. Then we say, that Ð  is a Byzantine Agreement protocol among 
processors in 

),,(= 1 nPPP … n D

P  with values in , where each  begins with an input value  
and finally decides on a value 

D iP Dxi ∈
Dyi ∈ , if it satisfies the following conditions:  

      • Validity or Persistency: If all honest players have as input the same value 
x , then all honest players will decide on x ;  

     • Consistency: If  is a honest player, who decided on value , and, if  

is also a honest player, then he will also decide on .  
iP iy jP

ij yy =
     • Termination: All players will eventually terminate the protocol;  
   In the above definitions, we say that the message space is a (finite) set , but 

we can assume, without loss of generality, that . By encoding each 
element of a finite set, with a binary string and running a protocol with  
many times, we may restrict our attention only to the binary case. 

D
{0,1}=D

{0,1}=D

In Byzantine Agreement protocols, there are three parameters, which we want 
to optimize:   
Bit Complexity  This is the total number of bits sent by all players. It is denoted by 

.  BC
Round  Complexity   This is denoted by  and means the total time, which the 
protocol requires, until it achieves Byzantine Agreement (or General).  

RC

Resiliency     It means the number of corrupted players, up to which a protocol can 
tolerate. If a protocol can handle up to  actively corrupted players, then we say 
that it is -resilient.  

ant <
a

          There are two different kinds of Byzantine Agreement protocols. There are 
protocols, which satisfy the conditions in the absolute sense, without making any 
assumptions for the honest nor the corrupted players (the adversary). We say that 
these protocols provide information-theoretic security. On the other hand there are 
protocols, which assume that there is some consistently shared data (e.g. PKI), before 
the beginning of the protocol. The most common case is that these protocols also 
assume that the adversary's computational power is not infinite, but it is polynomially 
bounded. As we have mentioned our protocol works for the latter case, it is based, 
namely, on some cryptographic assumptions, namely the discrete logarithm and the 
Diffie-Hellman problem. 
 
3. Basic Tools 

 

In this section we describe the basic tools, which are used in our protocol, 
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namely the Threshold Signature Scheme and the Common Coin protocol. The full 
protocols can be found in [Sho00] and in [CKS00] respectively. 

3.1 Threshold Signatures 
The basic idea behind Threshold Signatures is the following: Assume that there 

is a message given to a group of people. Some of them sign this message and some 
not. If at leat  of them signed this message, then we say that this group signed this 
message. An obvious way to check if the group signed the message is to collect at 
least  different signed messages (e.g. using RSA signature scheme [RSA78]) and to 
verify each signature one by one. Using a Threshold Signatures scheme, though, the 
group by itself can produce a single signature on this message and anyone, who 
verifies this signature (he collects only one signature and not more) is sure that at 
least  of them signed the message. Note we are not concerned to prove, which of 
them did sign the message but that at least any k  of them. 

k

k

k

Here is an overview of a  Threshold Signature scheme. There is a set of 
 parties, where  of them may be corrupted and  of them are both necessary and 

sufficient to produce a Threshold Signature on a message.It is obvious that 
 must hold in order our scheme to be meaningful. We have to mention 

that signatures are made by parties which belong to this set of , but can be verified 
by anyone. 

),,( tkn
n t k

tnkt −≤<
n

The dealer generates a public key PK , a private secret key for each party , 
where all these private keys are shares of a specific secret value. In addition the dealer 
generates a global verification key VK  and a local verification key for each player 

. Each player  possesses his private key , public key 

iSK

iVK iP iSK PK  and all 
verification keys. Suppose that a set of  players are asked to produce a threshold 
signature on a message. Then every player of this set produces a signature share on 
this message using his private key, sends it to the others. After collecting the other 

 signature shares he checks with a  algorithm their validity. 
If they all are valid then he uses a  algorithm to produce a 
threshold signature on the message. This signature can be verified by anyone using 
the public key 

k

1−k onVerificatiShare 
CombiningShare 

PK . As long as , it is obvious that if someone checks a 
threshold signature on a message and computes that it is valid, then all  parties have 
signed the message. We have described everything we need to define a  
Threshold Signature scheme: 

tk >
k

),,( tkn

  Definition 3 A  Threshold Signature scheme consists of the following 
three parts: 

),,( tkn

  • Dealer's action: The dealer generates a public key ,  different key PK n



Computer Security 135 

shares  and  different local verification keys . Then he 
sends to all players the public key, all verification keys and to player  the secret 
key . The verification key  corresponds to player . 

NSKSK ,,1 … n NVKVK ,,1 …

iP

iSK iVK iP
  • Signature Verification Algorithm: It verifies the validity of a threshold 

signature, which was produced by the Share Combining Algorithm.                                            
   • Share Verification Algorithm: It verifies that a share signature, which  

claims to have properly produced, is valid. To do this it uses the public key , the 
verification key VK  and the local verification key of , namely . 

iP
PK

iP iVK
   • Share Combining Algorithm: It produces the threshold signature using k  

valid signature shares on the message. It also uses the public key  and the 
verification keys. 

PK

 We say that a Threshold Signatures scheme is secure iff the following 
requirements hold: 

 : It is computationally infeasible for the adversary to produce k  
valid signature shares such that the output of the  algorithm is a 
valid signature. 

Robustness
ningsharecombi

 : It is computationally infeasible for the adversary to 
produce a signature on a message if the uncorrupted players who produced a signature 
share are less than 

tyforgeabiliNon −

tk − .   

3.2 Common Coin 

 There are  parties, which want to produce a random coin value (  or 1) in 
such a way that if the adversary corrupts up to  of them, he cannot predict the the 
value of it nor influence the output. In other words his prediction of the coin value is 

 and, furthermore, the security of the scheme is the same as if all  parties were 
together and tossed an unbiased coin. We say that we have a  CommonCoin 
scheme, if k  players are both necessary and sufficient to produce a common coin 
value. 

n 0
t

1/2 n
),,( tkn

The techniques used in such a scheme are almost the same as in Threshold 
Signature protocol. There is a dealer, who generates secret keys , one 
for each player. Then, he computes the local verification keys , one for 
each player, which are dependent from the secret keys. After the dealing phase each 
player  possesses all verification keys along with his own secret key. 

nSKSK ,,1 …

nVKVK ,,1 …

iP
Using these values each player computes a share of the coin and then he 

collects  valid coin shares and combines them to compute the value of the coin. We 
denote by  the name of the coin and by  its value. 

k
C )(CF
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 Definition 4 The security requirements of a  Common Coin protocol, 
which produces a common value between 0 and 1 for n  players are the following: 

),,( tkn

 : It is computationally infeasible for the adversary to produce a 
name  and  valid coin shares of  such that the output, when combining the 
shares is not . 

Robustness
C k C

)(CF
 : The probability that the adversary may predict the correct 

output as value of the coin C  is negligibly bigger than 1/2 .   
bilityUnpredicta

 
4. Byzantine Agreement Protocol 

 

Now, we are ready to present the Byzantine Agreement protocol. In the 
protocol we mention  (Byzantine Agreement Number),which is a counter, 
which increases every time the same set of parties uses this protocol. The reason is 
that the signature shares must be valid only for one implementation of the protocol, so 
that the adversary will not be able to keep some messages and use them another time. 
Moreover, we use a 

BANr

),,( ttnn −  Threshold Signature scheme (and this is what it 
meant when a player is asked to produce Thr -signature, namely a  
threshold signature) and a 

),,( ttnn −
),,( ttnn −  Coin - Tossing scheme. This is the reason, why 

this protocol requires a trusted third party in the set-up phase, but for the same set of 
parties this precomputation phase is needed only once and thereafter they can run the 
protocol any time they want. 
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Figure 1. Byzantine Agreement Protocol 

Remark 5 If a player computes  at any step, then he does not send 
anything in this step. If a player  does not send anything to another player , then 

the latter player regards 's vote as . Moreover, if a player cannot do what 
he is asked (produce a valid signature), then he does not send anything, he simply 
waits for the next step.   

abstain
iP jP

iP abstain

  Theorem 6 The above protocol achieves Consensus, allowing a negligible 
probability of error, in constant number of rounds and is 1/2 resilient. If we run the 
protocol for  rounds, then the probability of error is . In addition the bit 
complexity is BC= , where  is the size of a signature share and  a 
security parameter (number of phases).   

k4 k1/2
|)|( 2 sknO || s k

             Proof: We decide the round complexity of the protocol by choosing any k  
we want, however, the largest  is, the smallest the probability of error will be. The 
bit complexity is also obvious to be BC= , but it is also dependent from 

k
|)|( 2 snO
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BANr , because it has to be different every time we run the protocol, yet if we 
assume that we will not need too many invocations of the protocol we have the latter 
complexity. 

Validity: Assume that all correct players have 1 as their input value. Since the 
total number of correct players is the same with the corrupted plus at least one, all 
correct players compute the same value during the second step. Thus no corrupted 
player will be able to compute a proper vote for  during the second step and, hence, 
all correct players will compute the value 1 in the third step. At last, since no correct 
player will change his input value in the common-coin step validity will hold no 
matter how large  is. The same hold if the input value of all correct players was 0 . 

0

k
Consensus: We are going to prove Consensus and see where the probability of 

error lies examining all possible cases step by step. 
Assume that all correct players compute  in step 2. Then all correct 

players will compute  in step 3, because the adversary will not have a 
sufficient number of votes to send to a player and convince him to compute  
in the third step. This leads all correct players to have as input value in the next phase 
the result of the common coin. Then Consensus is satisfied due to validity. 

abstain
abstain

{0,1}∈v

Assume that two different players  compute  and 21, PP 1b 12 1= bb −  in second 
step. Then all correct players will compute  during the third step, because 
each player receives proper messages for both values. Then all players will have as 
input value in the next phase the result of the common coin and consistency holds 
because of validity. 

abstain

At last assume that there are some player, who compute 1 in step 1 and all the 
other correct players compute , then either all players compute  in 
step 3 or some of them (maybe all) compute 1 in step 3. This holds, because the 
adversary will not have a sufficient number of votes for  to make a valid Threshold 
Signature and send it to an uncorrupted player and make him compute  in the third 
step. This means, that if the result of the common coin is also 1, then all correct 
players will begin the next phase with input value 1 and consistency holds due to 
validity. 

abstain abstain

0
0

If all processors were honest, then the protocol achieves Consensus always, 
because all players would compute the same value during the first step. Only the 
adversary could make the protocol fail, if he knew the result of the common coin. 
Knowing the result of the common coin, then the adversary could be able to make 
some players compute the complementary value of the coin in main-vote step. This 
would make the correct players not to enter the new phase with the same value. 
However, if we assume that the adversary has no advantage in predicting the result of 
the common coin, the probability that the protocol fails is , where  the pre-
decided number of phases. 

k1/2 k
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5. Comparison Table and Conclusions 
 

In table 1 we compare this protocol with others of all cases, information- 
theoretic, cryptographic, deterministic or random protocols. The comparison is maid 
in resiliency, Round and Bit Complexity with the most efficient (classical) Byzantine 
Agreement protocols. The protocols of [Rab83] and [Tou84], which were the most 
efficient Monte Carlo cryptographic protocols, were not as efficient as the present, 
because, as we see, they either required a higher Bit Complexity or were less resilient. 
However, as we saw, it was the technique of Threshold Signatures (of [Sho00]) along 
with the Common Coin protocol (of [CKS00]), which allowed this protocol to be so 
efficient. 

Table 1.The complexities  of some popular Byzantine Agreement 
(Consensus)protocols for synchronous networks. By PKI it is meant that there is some 

consistently shared data before the beginning of the protocol, for example a digital 
signature scheme or a third trusted party. Note that the protocol with the asterisk (*) 

demand a stronger trusted dealer, who may be needed more than once as we have 
already mentioned in the introduction. The protocol with the double asterisk uses a 

pseudosignature scheme. 
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