
An Optimal Monte Carlo Type Byzantine
Agreement Protocol

Aristeidis Tentes

National Technical University of Athens
aristent@hotmail.com

Abstract

 The present paper deals with the problem of Byzantine Agreement in a synchronous
network in the presence of a polynomially bounded and malicious adversary. There are n
processors, which want to agree on a common value, but of them might be corrupted by an
adversary, who tries to make the protocol fail. We present a Monte Carlo type protocol, which
is optimal in fault tolerance (

t

1/2−n faults may occur) and in Round Complexity ().

Moreover, the Bit Complexity of this protocol is (where the length of a
signature), which is the lowest achieved until now for such a protocol. Until now the most
efficient Monte Carlo protocols either required bits during interaction or tolerated
at most corrupted players.

(1)O
|)ó|(2nO |ó|

|)ó|(3nO
1/3−n

 Key Words: Cryptography, Byzantine Agreement, Threshold Signature, Common

Coin

1. Introduction

 The problem of Byzantine Agreement was introduced by Pease, Shostak and
Lamport in.[PSL80] It deals with the problem of Consensus, where processors
want to agree on a common value, despite the presence of an adversary, who corrupts

 of them and wants to confuse them. An equivalent alternative is the problem of
Broadcast, where a processor wants to distribute his value to processors, but the
latter want to ensure that they all received the same value. Many protocols have been
proposed since then providing different kinds of security.

n

t
n

It has been proved that any deterministic protocol can tolerate at most
bad players and requires at least

/3< nt
1+t rounds. The most known protocols for this

setting are those proposed in [BGP92] and [CW92], where the total number of bits
needed during interaction is optimal, namely . The protocol of [FM88] is a Las
Vegas protocol, which may run in a constant expected number of rounds, but it is also
resilient against players and requires bits of communication. In the

)(2nO

/3< nt)(6nO

11th Panhellenic Conference in Informatics 132

cryptographic setting, the Consensus protocol proposed in [DS83] is deterministic
and, although it is optimal in resiliency (), it requires /2< nt 1+t rounds and a Bit
Complexity of (where the length of a digital signature) and the latter
is not optimal. If we want a protocol resilient against more than corrupted
players, then the lower bound for Bit Complexity is , which also implies
that a signature scheme is compulsory.

|)ó|(3nO |ó|
1/3−n

|)ó|(2nO

The Consensus protocol proposed here belongs to the cryptographic model and
assumes that the adversary is polynomially bounded. It is a Monte Carlo type
protocol, because it allows a negligible probability of error. The protocols of [Rab83]
and [Tou84] work also for the same model, however, the former is less resilient,
while the latter requires a higher Bit Complexity. The present protocol is optimal in
resiliency, tolerating up to players and runs in a constant number of rounds. It
also requires a in bit complexity of , which means that it is faster and less
demanding than the previous protocols of the cryptographic Monte Carlo setting.

/2< nt
|)ó|(2nO

The protocol presented here uses techniques from [CKS00], namely the
Common Coin protocol and the threshold signature scheme from [Sho00]. (The
protocol of [CKS00] works for an asynchronous network, while our protocol is
designed for synchronous networks). As a consequence, our protocol requires a Third
Trusted Party once and for all, in contrast to those in [Rab83] and [Tou84], which
require a trusted dealer to predistribute some data for each implementation.

2. Preliminaries

2.1 Byzantine Agreement

Let us see, now, the exact definition of Byzantine Agreement in both cases of
Consensus and Broadcast. In the literature, the term Byzantine General is sometimes
used for the case of Broadcast (there is a general, who wants to send a message to all
his lieutenants, but the latter want to be sure, that they all receive the same message),
therefore we use the term Byzantine Agreement only for the case of Consensus:

 Definition 1 (Broadcast:) Let be a set of processors,
be a finite domain and

),,(= 1 nPPP … n D
PPs ∈ be the sender. Then we say, that is a Byzantine

General protocol among processors in
Ð

P with values in , where has as input a
value and all players finally decide on a value

D sP
Dxs ∈ Dyi ∈ , if it satisfies the

following conditions:

 • Validity: If the sender is honest, then all correct players will decide on ; sx
 • Consistency: If is a correct player, who decided on value , and, if iP iy jP

Computer Security 133

is also a correct player, then he also will decide on . ij yy =
 • Termination: All players will eventually terminate the protocol;
 Definition 2 (Consensus:) Let be a set of processors,

be a finite domain. Then we say, that Ð is a Byzantine Agreement protocol among
processors in

),,(= 1 nPPP … n D

P with values in , where each begins with an input value
and finally decides on a value

D iP Dxi ∈
Dyi ∈ , if it satisfies the following conditions:

 • Validity or Persistency: If all honest players have as input the same value
x , then all honest players will decide on x ;

 • Consistency: If is a honest player, who decided on value , and, if

is also a honest player, then he will also decide on .
iP iy jP

ij yy =
 • Termination: All players will eventually terminate the protocol;
 In the above definitions, we say that the message space is a (finite) set , but

we can assume, without loss of generality, that . By encoding each
element of a finite set, with a binary string and running a protocol with
many times, we may restrict our attention only to the binary case.

D
{0,1}=D

{0,1}=D

In Byzantine Agreement protocols, there are three parameters, which we want
to optimize:
Bit Complexity This is the total number of bits sent by all players. It is denoted by

. BC
Round Complexity This is denoted by and means the total time, which the
protocol requires, until it achieves Byzantine Agreement (or General).

RC

Resiliency It means the number of corrupted players, up to which a protocol can
tolerate. If a protocol can handle up to actively corrupted players, then we say
that it is -resilient.

ant <
a

 There are two different kinds of Byzantine Agreement protocols. There are
protocols, which satisfy the conditions in the absolute sense, without making any
assumptions for the honest nor the corrupted players (the adversary). We say that
these protocols provide information-theoretic security. On the other hand there are
protocols, which assume that there is some consistently shared data (e.g. PKI), before
the beginning of the protocol. The most common case is that these protocols also
assume that the adversary's computational power is not infinite, but it is polynomially
bounded. As we have mentioned our protocol works for the latter case, it is based,
namely, on some cryptographic assumptions, namely the discrete logarithm and the
Diffie-Hellman problem.

3. Basic Tools

In this section we describe the basic tools, which are used in our protocol,

11th Panhellenic Conference in Informatics 134

namely the Threshold Signature Scheme and the Common Coin protocol. The full
protocols can be found in [Sho00] and in [CKS00] respectively.

3.1 Threshold Signatures
The basic idea behind Threshold Signatures is the following: Assume that there

is a message given to a group of people. Some of them sign this message and some
not. If at leat of them signed this message, then we say that this group signed this
message. An obvious way to check if the group signed the message is to collect at
least different signed messages (e.g. using RSA signature scheme [RSA78]) and to
verify each signature one by one. Using a Threshold Signatures scheme, though, the
group by itself can produce a single signature on this message and anyone, who
verifies this signature (he collects only one signature and not more) is sure that at
least of them signed the message. Note we are not concerned to prove, which of
them did sign the message but that at least any k of them.

k

k

k

Here is an overview of a Threshold Signature scheme. There is a set of
 parties, where of them may be corrupted and of them are both necessary and

sufficient to produce a Threshold Signature on a message.It is obvious that
 must hold in order our scheme to be meaningful. We have to mention

that signatures are made by parties which belong to this set of , but can be verified
by anyone.

),,(tkn
n t k

tnkt −≤<
n

The dealer generates a public key PK , a private secret key for each party ,
where all these private keys are shares of a specific secret value. In addition the dealer
generates a global verification key VK and a local verification key for each player

. Each player possesses his private key , public key

iSK

iVK iP iSK PK and all
verification keys. Suppose that a set of players are asked to produce a threshold
signature on a message. Then every player of this set produces a signature share on
this message using his private key, sends it to the others. After collecting the other

 signature shares he checks with a algorithm their validity.
If they all are valid then he uses a algorithm to produce a
threshold signature on the message. This signature can be verified by anyone using
the public key

k

1−k onVerificatiShare
CombiningShare

PK . As long as , it is obvious that if someone checks a
threshold signature on a message and computes that it is valid, then all parties have
signed the message. We have described everything we need to define a
Threshold Signature scheme:

tk >
k

),,(tkn

 Definition 3 A Threshold Signature scheme consists of the following
three parts:

),,(tkn

 • Dealer's action: The dealer generates a public key , different key PK n

Computer Security 135

shares and different local verification keys . Then he
sends to all players the public key, all verification keys and to player the secret
key . The verification key corresponds to player .

NSKSK ,,1 … n NVKVK ,,1 …

iP

iSK iVK iP
 • Signature Verification Algorithm: It verifies the validity of a threshold

signature, which was produced by the Share Combining Algorithm.
 • Share Verification Algorithm: It verifies that a share signature, which

claims to have properly produced, is valid. To do this it uses the public key , the
verification key VK and the local verification key of , namely .

iP
PK

iP iVK
 • Share Combining Algorithm: It produces the threshold signature using k

valid signature shares on the message. It also uses the public key and the
verification keys.

PK

 We say that a Threshold Signatures scheme is secure iff the following
requirements hold:

 : It is computationally infeasible for the adversary to produce k
valid signature shares such that the output of the algorithm is a
valid signature.

Robustness
ningsharecombi

 : It is computationally infeasible for the adversary to
produce a signature on a message if the uncorrupted players who produced a signature
share are less than

tyforgeabiliNon −

tk − .

3.2 Common Coin

 There are parties, which want to produce a random coin value (or 1) in
such a way that if the adversary corrupts up to of them, he cannot predict the the
value of it nor influence the output. In other words his prediction of the coin value is

 and, furthermore, the security of the scheme is the same as if all parties were
together and tossed an unbiased coin. We say that we have a CommonCoin
scheme, if k players are both necessary and sufficient to produce a common coin
value.

n 0
t

1/2 n
),,(tkn

The techniques used in such a scheme are almost the same as in Threshold
Signature protocol. There is a dealer, who generates secret keys , one
for each player. Then, he computes the local verification keys , one for
each player, which are dependent from the secret keys. After the dealing phase each
player possesses all verification keys along with his own secret key.

nSKSK ,,1 …

nVKVK ,,1 …

iP
Using these values each player computes a share of the coin and then he

collects valid coin shares and combines them to compute the value of the coin. We
denote by the name of the coin and by its value.

k
C)(CF

11th Panhellenic Conference in Informatics 136

 Definition 4 The security requirements of a Common Coin protocol,
which produces a common value between 0 and 1 for n players are the following:

),,(tkn

 : It is computationally infeasible for the adversary to produce a
name and valid coin shares of such that the output, when combining the
shares is not .

Robustness
C k C

)(CF
 : The probability that the adversary may predict the correct

output as value of the coin C is negligibly bigger than 1/2 .
bilityUnpredicta

4. Byzantine Agreement Protocol

Now, we are ready to present the Byzantine Agreement protocol. In the
protocol we mention (Byzantine Agreement Number),which is a counter,
which increases every time the same set of parties uses this protocol. The reason is
that the signature shares must be valid only for one implementation of the protocol, so
that the adversary will not be able to keep some messages and use them another time.
Moreover, we use a

BANr

),,(ttnn − Threshold Signature scheme (and this is what it
meant when a player is asked to produce Thr -signature, namely a
threshold signature) and a

),,(ttnn −
),,(ttnn − Coin - Tossing scheme. This is the reason, why

this protocol requires a trusted third party in the set-up phase, but for the same set of
parties this precomputation phase is needed only once and thereafter they can run the
protocol any time they want.

Computer Security 137

Figure 1. Byzantine Agreement Protocol

Remark 5 If a player computes at any step, then he does not send
anything in this step. If a player does not send anything to another player , then

the latter player regards 's vote as . Moreover, if a player cannot do what
he is asked (produce a valid signature), then he does not send anything, he simply
waits for the next step.

abstain
iP jP

iP abstain

 Theorem 6 The above protocol achieves Consensus, allowing a negligible
probability of error, in constant number of rounds and is 1/2 resilient. If we run the
protocol for rounds, then the probability of error is . In addition the bit
complexity is BC= , where is the size of a signature share and a
security parameter (number of phases).

k4 k1/2
|)|(2 sknO || s k

 Proof: We decide the round complexity of the protocol by choosing any k
we want, however, the largest is, the smallest the probability of error will be. The
bit complexity is also obvious to be BC= , but it is also dependent from

k
|)|(2 snO

11th Panhellenic Conference in Informatics 138

BANr , because it has to be different every time we run the protocol, yet if we
assume that we will not need too many invocations of the protocol we have the latter
complexity.

Validity: Assume that all correct players have 1 as their input value. Since the
total number of correct players is the same with the corrupted plus at least one, all
correct players compute the same value during the second step. Thus no corrupted
player will be able to compute a proper vote for during the second step and, hence,
all correct players will compute the value 1 in the third step. At last, since no correct
player will change his input value in the common-coin step validity will hold no
matter how large is. The same hold if the input value of all correct players was 0 .

0

k
Consensus: We are going to prove Consensus and see where the probability of

error lies examining all possible cases step by step.
Assume that all correct players compute in step 2. Then all correct

players will compute in step 3, because the adversary will not have a
sufficient number of votes to send to a player and convince him to compute
in the third step. This leads all correct players to have as input value in the next phase
the result of the common coin. Then Consensus is satisfied due to validity.

abstain
abstain

{0,1}∈v

Assume that two different players compute and 21, PP 1b 12 1= bb − in second
step. Then all correct players will compute during the third step, because
each player receives proper messages for both values. Then all players will have as
input value in the next phase the result of the common coin and consistency holds
because of validity.

abstain

At last assume that there are some player, who compute 1 in step 1 and all the
other correct players compute , then either all players compute in
step 3 or some of them (maybe all) compute 1 in step 3. This holds, because the
adversary will not have a sufficient number of votes for to make a valid Threshold
Signature and send it to an uncorrupted player and make him compute in the third
step. This means, that if the result of the common coin is also 1, then all correct
players will begin the next phase with input value 1 and consistency holds due to
validity.

abstain abstain

0
0

If all processors were honest, then the protocol achieves Consensus always,
because all players would compute the same value during the first step. Only the
adversary could make the protocol fail, if he knew the result of the common coin.
Knowing the result of the common coin, then the adversary could be able to make
some players compute the complementary value of the coin in main-vote step. This
would make the correct players not to enter the new phase with the same value.
However, if we assume that the adversary has no advantage in predicting the result of
the common coin, the probability that the protocol fails is , where the pre-
decided number of phases.

k1/2 k

Computer Security 139

5. Comparison Table and Conclusions

In table 1 we compare this protocol with others of all cases, information-
theoretic, cryptographic, deterministic or random protocols. The comparison is maid
in resiliency, Round and Bit Complexity with the most efficient (classical) Byzantine
Agreement protocols. The protocols of [Rab83] and [Tou84], which were the most
efficient Monte Carlo cryptographic protocols, were not as efficient as the present,
because, as we see, they either required a higher Bit Complexity or were less resilient.
However, as we saw, it was the technique of Threshold Signatures (of [Sho00]) along
with the Common Coin protocol (of [CKS00]), which allowed this protocol to be so
efficient.

Table 1.The complexities of some popular Byzantine Agreement
(Consensus)protocols for synchronous networks. By PKI it is meant that there is some

consistently shared data before the beginning of the protocol, for example a digital
signature scheme or a third trusted party. Note that the protocol with the asterisk (*)

demand a stronger trusted dealer, who may be needed more than once as we have
already mentioned in the introduction. The protocol with the double asterisk uses a

pseudosignature scheme.

6. Acknowledgements

I would like to thank my supervisor Pr. Stathis Zachos and Pr. Aris Pagourtzis
for fruitful discussions and helpful comments.

11th Panhellenic Conference in Informatics 140

References

