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Abstract 
 The concept of  trust plays an important role in the operation and public acceptance of today's 
computing environment. Although it is a difficult concept to formalize and handle, many 
efforts have been made towards a clear definition of trust and the development of systematic 
ways for trust management. Our central viewpoint is that trust cannot be defined, anymore, as 
consisting of a static set of rules that define systems properties that hold eternally due to the 
highly dynamic nature of today's computing systems (e.g. wireless networks, ad-hoc networks, 
virtual communities and digital territories etc.). Our approach is an effort to define trust in 
terms of properties that hold with some limiting probability as the the system grows and try to 
establish conditions that ensure that ‘‘good’’ properties hold  almost certainly. Based on this 
viewpoint, in this paper we provide a new framework for defining trust through formally 
definable properties that hold, almost certainly, in the limit in randomly growing 
combinatorial structures that model ‘‘boundless’’ computing systems (e.g. ad-hoc networks), 
drawing on results that establish the threshold behavior of predicates written in the first and 
second order logic. We will also see that, interestingly, some trust models have properties that 
do not have limiting probabilities. This fact can be used to demonstrate that as certain trust 
networks grow indefinitely, their trust properties are not certain to be present. 
 
Keywords: Trust, formal logic  

1. Introduction 
Over the years, trust has proved to be a hard to formally define concept for traditional 
computing systems and networks as well as the recent grid computing paradigm. 
                                                 
1Partially supported by the IST Programme of the European Union under contact number IST-
2005-15964 (AEOLUS) and the INTAS Programme under contract with Ref. No 04-77-7173 
(Data Flow Systems: Algorithms and Complexity (DFS-AC)). 
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Given this limited definability, trust has typically be based on establishing 
mechanisms of authentication, security, and privacy. In addition, trust is also linked to 
other equally hard to define concepts such as honesty, reputation and reliability. 
However, trust plays a major role in the viability and usability of a computing system. 
For instance, in an ad-hoc network, where there are numerous dynamically changing 
interactions between the participating entities, trust is a fundamental challenge to 
establish and deploy. Thus, there seems to be a need for a general trust evaluation 
model that can also reflect the highly dynamic nature of modern computing 
environments. 

Our focus in this paper is on trust models that support unpredictable (i.e. random) 
interactions between elements of a dynamic distributed computing system such as ad-
hoc and wireless network. Our approach can be paralleled to the trust model given in 
[Mahoney G et Al.(2005)] that attempts to define trust as the result of the interactions 
between pairs of network nodes, where each interaction is of the form < ,  with l  
being the trust level and  the confidence in this level. With regard to other work on 
trust, there is considerable ongoing research on the development and analysis of new 
trust management models. Blaze  et al. in [Blaze M. et Al (1996)]  proposed the 
application of automated trust mechanisms in distributed systems. Josang [A. Josang 
(1996)]  focus on the strong relationship between the notions of trust and security. 
Moreover a number of schemes for the design of secure information systems have 
been proposed (see,for example [Eschenauer L. et Al. (2002)] and [Hubaux J. et Al. 
(2001)]) which are based on automated trust management protocols. The composition 
and propagation of trust information between elements of information systems are 
also of pivotal concern and a number of research works are devoted to them (see [ 
Guha R. et Al. (2004)],[ Richardson M. et Al. (2003)]). Marsh in [Marsh S. (1994)]  
makes a first attempt to formalize  Computational Trust using definitions or rules for 
representing and evaluating trust-like relationships. 

>l c
c

In our work, we rely on formal logic and the theory of threshold phenomena that 
asymptotically emerge with certainty (under certain conditions) in order to build new 
trust models and to evaluate the existing one. We try to combine first and second 
order logic in order to analyze the trust measures of specific network models. 
Moreover we use formal logic in order to determine whether generic reliability trust 
models provide a method for deriving trust between peers/entities as the network's 
components grow.  

Moreover we analyze two different graph models, the first one is :  Intersection 
Random Graph model, denoted by Gk,m,p, and the second one is:  Fixed Radius 
Random Graph, denoted by Gk,R0,2. According to the former model, each of the k 
agents selects uniformly at random a subset from a set of  available resources, each 
of which selected independently of the others with probability p. Then two agents are 
lined via a ‘‘trust’’ edge whenever their selections contain at least one common 

m
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resource. According to the latter model, k agents are placed uniformly at random 
within a circular area of radius 0R  and two of them are lined via a ``trust'' edge if 
their distance is at most R0=2C. Then using a number of natural, formally definable 
properties of these models we can define global ‘‘trust’’ system properties that 
emerge though the local trust interactions (trust edges of the model) under certain 
conditions. 

2. The first and second order languages of graphs 

2.1 First order language of graphs 
In this subsection we will be focused on graph properties expressible in the  first 
order language of graphs. This language can be used to describe some useful (and 
naturally occurring in applications) properties of random graphs under a certain 
random graph model using elements of the first order logic. 

We will now define the important  extension statement in natural language, although 
it clearly can be written using the first order language of graphs (see  for the details 
[Spenser J. (2001)]): 

Definition 1 (Extension statement ,s tA ) The extension statement ,s tA , for given 

values of , states that for all distinct ,s t 1 2, , , sx x … x  and 1 2, , , ty y … y  there exists 
distinct  adjacent to all z ix s but no jy . 

The importance of the extension statement ,r sA  lies in the following Theorem.  

Theorem 1. Let  to be a random graph with  nodes and G n ,r sA  to be an extension 

statement, then if ,r sA  for  all  , then for every 
statement 

,r s ,[ ]limn r sPr GhasA→∞ = 1
A  written in the first order language of graphs either 

 or .  [ ] =limn Pr GhasA→∞ 0 = 1[ ]limn Pr GhasA→∞

The connection between threshold properties and first order logic was first noted by 
Fagin in the seminal paper [Fagin R. (1976)]. In Section 4 we will describe a simple 
trust model based on the intersection random graph model. 

2.2 Second order language of graphs 
Although the extension property can be used in order to settle the existence of 
thresholds for all properties expressible in the first order language of graphs in any 
random graph model, things change dramatically when properties are considered that 
are expressed in the  second order language of graphs. 
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The second order language of graphs is defined exactly as the first order language 
(see Section 2.1) except that it allows quantification over subsets of graph vertices 
(predicates) instead of single vertices. An example of such a property follows (see 
e.g. [Gupta et Al (1998)]). 

Definition 2 (Separator property) Let  be a family of subsets of 
some set 

1 2= { , , , }mF F F F…
X . A separator for  is a pair  of disjoint subsets of F ( , )S T X  such that 

each member of  is disjoint from either  or from T . The size of the separator is 
.   

F S
min(| |,| |)S T

In order to cast the separator property into the language of graphs, we set X  to be a 
set of vertices and the subsets  to be of cardinality 2 so as to represent graph edges. 
Then the separator property can be written in the framework of the second order 
language of graphs as follows:  

iF

                                   (1) [ ( ) ( ( )].S T x y Sx Tx Axy Sx Ty Sy Tx∃ ∃ ∀ ∀ ¬ ∧ ∧ →¬ ∧ ∨ ∧

 Let us define another property:  

Definition 3 (Vertex attractor property) A graph G  has the trusted representatives 
property if there exists a set of vertices such that any vertex in the graph is an 
adjacent with at least one of these vertices. 

A formal definition using second order logic is the following: 

[ ]S x y Axy Sy .∃ ∀ ∃ ∧  (2) 

 The extension statement, cannot, unfortunately, be used in order to examine whether 
(and under which conditions on the random graph model parameters) the separator 
property or the trusted representatives property is a threshold property since these 
properties cannot be written in the first order language of graphs. However, there are 
second order fragments that do not have a threshold behavior while other second 
order fragments do (see  [Kolaitis et Al. (1987)] , [Kolaitis et Al. (2000)]). 

Let  denote the existential second order logic (i.e. formulas contain only existential 
quantification over second order variables, that is sets). Let FO denote the first order 
logic formalism and 

1
1Σ

L  be any fragment of FO. Then a 1
1( )LΣ  sentence over a 

vocabulary R  is an expression of the form ( , )S R Sφ∃ , where  is a set of relation 
variables and 

S
( , )R Sφ  is a first order sentence on vocabulary ( , )R S (see [Kolaitis et 

Al. (2000)]).  
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3. Confidence based trust models and Kernel properties of 
directed graphs 
We can consider a network of trust as a labeled directed graph where the edge labels 
indicate the trust levels. Let  to be such a directed graph, where 

 represents its vertex set and the 
= ( ( ), ( ))G V G E G

( )V G ( )E G  the set of arcs. We will use a slightly 
adapted version of the trust model defined in [Mahoney G. et Al. (2005)] in order to 
show that some trust definitions lead to trust models that have no asymptotic 
probabilities for their properties. 

Definition 4. If 1 2, (v v V G)∈  and 1 2( , ) ( )v v E G∈  then the label  denotes 
's trust and confidence in . Each arc 

< , >l c

1v 2v 1 2( , ) ( )v v E G∈  has a label of the form 
, where:   < , >l c

     •  is the level of trust of  in .  > 0l 1v 2v
     •  is a confidence value in [0, .  c 1]
The  Kernel property, which we believe can be the prototype for discovering other 
non-threshold properties, is defined in the context of directed graphs. The language of 
directed graphs is the same as the language of undirected graphs with only difference 
that the predicate ,x yA  that signifies adjacency between x  and  is not symmetric. A 

random digraph, according to model  is constructed by having each of the 
possible, directed edges being chosen for inclusion independently of each other, with 
constant probability 

y

,n pG

p . Then a kernel in the produced directed graph is a subset U  
of the set of vertices such that no edge exists between vertices within U  while for 
each vertex outside U  there exists an edge from this vertex to some vertex within U . 
This property is given below, written in the second order language of graphs (see 
[Mahoney G. et Al. (2005)]):  

               (3) , ,[( (( ) )) ( ( ( )))].x y x yU x y Ux Uy A x y Ux Uy A∃ ∀ ∀ ∧ →¬ ∧ ∀ ∃ ¬ → ∧

 The property in (3) is written in 1 2
1( )FOΣ , with  being the fragment of first 

order logic allowing propositions containing at most 2 variables. This property has 
asymptotic probability 1. However, in [Le Bars J.-M et Al (1998)]  (see, also, [Le 
Bars J.-M et Al (2000)]) two variants of the Kernel property were proposed that have  
no asymptotic probability and which are directed related to trust within the context of 
the model described in Section 4. We will concentrate below in the first variant, . 

2FO

1K

Let  be a set of vocabulary symbols. 
15 151 1 2 2

1 16 1 16 1 16= { , , , , , , , , , }R R R S S S S… … … …
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We define  on finite structures over the vocabulary 1K R . An R -structure nM  on 
domain  satisfies  if it has at least one kernel U , i.e. a subset of the n  parts of 
the structure that satisfies the following  INSIDE and  OUTSIDE properties:   

n 1K

     • INSIDE: No pair of distinct elements ( ,  of U)a b U×  belongs to 
{1,2, ,16} ii

R
∈ …∪ . 

 
     • OUTSIDE: For any  and any vertex  of , there is a vertex 15{1, , 2 }j∈ … c \n U

jd   such that U∈ ( , )jc d  belongs to 
{1,2, ,16} ii

S
∈ …∪ j .  

 The property  is, now, expressible by the following 1K 1 2
1
( )FO∑  R -sentence 

( ) ( )( )
( )( )( )

{1, ,16}

{1, ,16}15{1, ,2

(

).}

i i

j
i ij

U x y Ux Uy x y R xy

x y Ux Uy S xy

∈

∈∈

∃ ∀ ∀ ∧ ∧ ≠ →¬ ∨

∧ ∧ ∀ ∃ → ∧∨

…

……

                                  (4) 

In the context of the trust model given in Definition 4, we can think as follows. For 
the labels , we let l  take values on the discrete value set {1,  while 
the confidence value  is suitably discretized within the range [0 , so as to take 
values on the discrete value set .  

< , >l c 2, ,16}…
c ,1]

15{1,2, , 2 }…

The vocabulary   can be partitioned 
into the following 17 sets: 

15 151 1 2 2
1 16 1 16 1 16= { , , , , , , , , , }R R R S S S S… … … …

1 1 16= { , , }R R…
15 15 151 2 1 2 1 2

1 1 1 2 2 2 16 16 16= { , , }, = { , , }, , = { , , }S S S S S S S S S… … … …, .  R

The R  set represents the 16 levels of trust with 0 confidence level. The 16  sets 
represent the 16 possible levels of trust and their members correspond to the  
possible non-zero confidence values.According to the above formulation, the property 

 says that there is a subset U  of the  parts of the structure that are not pairwise 

connected with trust labels from the class 

S
152

1K n

{1,2, ,16} ii
R

∈ …∪ , i.e. the confidence value of 

their pairwise trust levels is non-zero, while every possible non-zero confidence level, 
from 1 to , is present in at least one trust connection from a non-member of U  to 
a member of U . Using the main result of [Le Bars J.-M et Al (1998)]  that the 
property  does not have a limiting probability and, thus, in particular cannot hold 
with probability 1, we deduce that the the analogous trust property we described 
within the  context also does not hold with probability tending to 1 as the system's 
size  increases. 

152

1K

1K
n
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Although this connection of the trust model in Definition 4 with the property  is 
not very natural it, nevertheless, shows that one can describe trust relations that do not 
have a limiting probability as the trust structure grows and the interactions vary in an 
unpredictable (i.e. random) fashion. We believe that one can use this connection, 
however, in order to establish other more natural properties that, also, do not possess 
a limiting probability and, thus, are not guaranteed to hold with certainty in the limit. 

1K

4. A generic trust model based on threshold laws for 
mathematical logic 
As we mentioned earlier in this paper, trust is a difficult concept to formalize and 
handle. What is more, our target framework of global/dynamic computation clusters 
does not seem to allow a static view of the trust concept, regardless of the way in 
which this concept is formalized. Our viewpoint is that trust should be a statistical, 
asymptotic concept to be studied in the limit, as the system's components grow 
according to some growth rate. Our practical viewpoint of trust in a dynamic, global 
computing system is the following : 

i)First one adopts a suitable random graph model that best suits the target dynamic 
system (network).  
ii) Secondly, one is focused on defining a number of properties that model facets of 
trust using first order logic or some second order logic fragment. Examples of such 
properties is the triangle property given in Section 2.1 and the separator and trusted 
representatives properties defined in (1) and (2) in Section 2.2 . If the property can be 
cast into the first order language of graphs, then one is certain that this is a certain 
property that either is possessed almost certainly by the growing system or it is not 
possessed almost certainly, depending on its monotonicity.  
iii)Following the second step, if the property under consideration can only be written 
using second order logic, then one examines whether the property can be cast into the 
language of a fragment of the second order logic that has a threshold behavior. Then 
one is certain that as the system grows the property holds asymptotically almost 
certainly or almost never (again depending on its monotonocity).  
However, if the property seems to be describable only in a second order logic 
fragment that, in general, does not have a threshold behavior) then this property 
should be further examined as to whether it is a threshold property or not. Such a 
property, called  Kernel (see below for a definition) is given in [Le Bars J.-M et Al 
(1998)] for the  model with fixed . It is interesting to define second order 
properties related to trust for a random graph model that have no threshold behavior 
since they are guaranteed to hold for a positive fraction of the random structures 
allowed by a random graph model.  

,n pG p
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5. Trust in Graph Models 
Based on the results presented in [Liagkou V. et Al.(2006)]), we will propose 
below a number of trust-related properties that can be studied in the context of 
the random intersection graph model and the fixed radius random graph 
model. 

5.1 Trust Properties of Intersection graph model 

Let us assume that we have a  random graph, interpreting its parameters in the 

following way. We have  available computing agents and  resources (e.g. trusted 
service access points or computer ports, located in some server). According to the 
model, each of the k  agents selects uniformly at random from within the set of the 

 resources, each of which selected independently of the others with probability . 
Then two agents are connected with a ‘‘trust’’ edge whenever their selections contain 
at least one shared service. From this point, we can proceed along two directions 
using the ideas proposed in the previous sections. 

, ,k m pG
k m

m p

The first direction consists in discovering a number of global system properties 
related to trust, that emerge through the local trust interactions (trust edges of the 
model), and define ranges of the model parameters that lead to the almost certain 
asymptotic validity or non validity of the global property of interest. 
For concreteness, let us define the following first order property:  

,[ ]x yx y A∀ ∃                                                                 (4)    

which states that for each node x  there exists at least one other node such that the 
two nodes trust each other. Since this property is monotone increasing, if the model 
parameters  obey the conditions then as the node population increases, the 
property stated above holds with probability tending to 1. 

, ,k m p

Another property that can be defined is the following:  

, ,[ x y y z ]x y z A A Axz∀ ∀ ∀ ∧ →                                          (5) 

which states that the trust relationship is transitive. Again, if the conditions on the 
random intersection graph model parameters hold, then in the limit the trust 
relationship is transitive with probability tending to 1. Similarly, the trusted 
representatives property holds for the random intersection graph model (see 
discussion in Section 2.2). 
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5.2 Trust Properties of Fixed radius random graph model 
Suppose that we have n  agents randomly distributed within a circle of radius R0 . We 
first define a circle of radius C cantered at each agent. Our fixed radius random graph 
with n agents is formed so as to include ‘‘trust’’ edges between agents only if their 
distance is at most 2C. Thus two agents establish a trusted connection if their cycles 
(of radius C) are intersected. Let us now define some first order properties related to 
trust using the threshold properties of the fixed radius graph model. In this context, 
R0=2C, that is two agents that trust each other if their ranges intersect, which occurs if 
their distance is at most 2C. Let us consider the following property:  every two 
vertices have a common trust agent. If this property holds, then for  each pair of 
agents that establish a trust connection there exists another trusted identity. This may 
cause problems since it increases the number of trusted parties without reason. As 
they both trust a third agent it is better one of them an indirectly trust connection with 

the third one. Setting 
( ) 1= ( )
( )

C n O
R n n

, this property is monotone increasing and it 

holds with probability tending to 0 (see [Liagkou V. et Al.(2006)]). Thus its 
complementary property, which is a trust' property, holds with probability 1. 

The second direction along which one can proceed is, in some sense, the opposite of 
the direction outlined above. The goal is not to establish conditions for ensuring 
almost certain validity or non-validity of some first order property related to trust but, 
on the contrary, to state higher order properties in the second order language of 
graphs (like the separator or vertex attractor property given in Section 2.2) and show 
that the properties have no limiting probability, i.e. they cannot be threshold 
properties. Such a property, being not a threshold property, leads a complex system to 
some kind of equilibrium, as the system grows. In both directions given above, the 
central idea is that trust is global property characterized by local interaction between 
system entities. 

6. Conclusions and directions for further research 
In this paper we have attempted to provide a practical and viable definition of trust for 
dynamically changing computing environments that can be described within the 
global computing paradigm. Our view is that trust can be reduced to a number of 
properties that appear as a limiting behavior in systems under certain conditions. 
These systems are modeled within the formalism of a random graph model according 
to the context of the target system. Then the properties can be written formally using 
the first and second order language of graphs. If the properties can be written in the 
first order language of graphs then one can use the extension statements in order to 
establish the conditions under which the model displays threshold behavior and, thus, 
all the properties hold asymptotically with either probability 0 or 1. 
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We hope that our paper will be a first step towards defining a methodology for 
studying a variety of properties (not only related to trust) using suitable random graph 
models and then look at the produced (by the model) systems not individually (which 
is impossible in a rapidly changing environment) but collectively in the limit. 
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