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Abstract 

The Block Cyclic Array Redistribution problem occurs in many important applications in 
parallel computing. In this paper, we consider this problem on bidirectional processor rings. 
We present a message combining (MC) approach that splits any array redistribution problem 
in a series of broadcasts where all sources send messages of the same size, thus a balanced 
traffic load is achieved. Unlike existing array redistribution algorithms, the message 
combining scheme introduced in this work eliminates the need for data reorganization in the 
memory of the source and target processors. Moreover, the processing of the scheduled 
broadcasts is pipelined, thus the total cost of redistribution is reduced. 
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1. Introduction-Related Work 
The problem of array redistribution between several processors is very 

important, affecting the performance of parallel programs. Many complicated parallel 
computing applications are composed of several stages. As the program proceeds 
from one stage to another, it may require different and efficient redistribution of data 
between several processor sets. Such applications are the alternate direction implicit 
method and the multidimensional Fast Fourier Transform [Kaushik et. Al. (1994)].  

The principal issues that should be taken into account for an efficient solution 
of the array redistribution problem are the index computation overheads, the total 
communication overhead, and the data reorganization. The index computation 
overheads consist of computing the target processor and the memory positions where 
each element will be located. The total communication overheads incur during data 
redistribution between parallel processors. Data reorganization is a very important 
issue for runtime array redistribution; redistributed array elements must be 
reorganized in every communication step so that, the data blocks sent and received 
are contiguous in the data array [N. S. Sundar et. Al. (2001)].  

Many methods for array redistribution can be found in the literature. In [C.-H. 
Hsu et. Al. (2001), Huang and Chu (2006)], processor mapping techniques for 
dynamic data redistribution are described. Thakur et al. [Thakur et. Al. (1996)] also 
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provided algorithms for array redistribution. Their work is divided into two cases: the 
general case of Cyclic(x) to Cyclic(y) redistribution, where there is no relation 
between x and y, and a special case where x is a multiple of y or y is a multiple of x. 
 Walker and Otto [D.W Walker, S.W Otto (1996)] worked on the problem of 
data redistribution from cyclic(x) to cyclic(Kx) on a grid of P processors. They 
provided synchronized and unsynchronized schemes that were free of conflicts. 
Desprez et al [Desprez et. Al. (1998)] focused their effort on solving the general 
redistribution problem, moving from cyclic (r) on a P-processor grid, to cyclic (s) on 
a Q-processor grid. The main idea behind their algorithm was to create homogeneous 
communication patterns which they called classes. Processor pairs in a certain class, 
exchanged messages of the same size.  

In this paper, we focus on scheduling block cyclic array redistribution on a 
processor ring. We present a block-cyclic array redistribution strategy where target 
blocks are formed by exchanging messages between specified sets of neighbouring 
source processors, with no need for data reorganization. This strategy allows for equal 
sized messages to be exchanged at any time in any direction of the network, thus, 
messages can be pipelined. This makes the scheme particularly efficient in networks 
with bounded node degree like rings. The rest of the paper is organized as follows: In 
Section 2 we briefly present the preliminaries for the block cyclic redistribution 
problem. In Section 3, we present our message combining algorithm (named MC). In 
Section 4, we show how MC applies on a bidirectional processor ring and perform 
cost analysis. Section 5 concludes the paper. 

2. Preliminaries 
 Consider an array of M elements that is initially distributed CYCLIC (r) on P 
processors, where r is the block size. The index of blocks is l, where l ∈  [0..M/Pr)  
and the local position of a data element inside a block is x. Our aim is to provide a 
target distribution CYCLIC (s) to a set of Q processors. The block size of the target 
distribution is s, the index of blocks is given by m, where m [0..M /Qs) and the local 
position of a data element inside a block is given by y. The distribution from 
CYCLIC(r) on P processors to CYCLIC (s) on Q processors is described by the 
redistribution equation: 
 
                                 (lP+p)r+w=(mQ+q)s+z                                         (1) 
 
where (p,q) is a set of communicating processors. 

The number of quadruples (l,m,x,y) that satisfy (1) is the number of elements 
redistributed from p to q or the communication cost Cp,q. Block cyclic redistribution is 
periodical and it repeats for every L=LCM (Pr,Qs) data elements, where L is the least 
common multiplier (LCM) of (Pr,Qs). According to Desprez et al. [Desprez et. Al. 
(1998)], a processor pair belongs to a class b(k) if the following equality is satisfied: 
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                                                 (pr-qs) mod g=k                                                         (2)  
 
where g is the greatest common divisor of Pr,Qs, that is g=gcd(Pr,Qs). The number 
of classes that exists in a redistribution problem is g. 
 We now extend the idea of classes and introduce the superclasses. The use of 
superclasses is a key idea for implementing the message combining scheme that will 
be introduced in the next paragraph. Initially, let us define the function dist (k1,k2) 
that computes the distance between two classes k1 and k2 such that: 
 
 
 
                   
 

 
dist (k1,k2) = 

k2-k1, if k2 ≥ k1 

                                                                                                                                   (3) 
g-k1+k2, otherwise

 
DEFINITION 1: A group of classes V=k1, k2...kn-1 , kn that differ by r mod g, that is: 
dist (k1,k2)= dist (k2,k3)= …..= dist (kn-1,kn)= r mod g, is called superclass.  
 

In the following paragraph we will show how the communication between 
processor pairs from a superclass forms target blocks redistributed to receiving nodes. 

3. The Message Combining Scheme 
In this Section we present the message combining (MC) scheme based on the 

superclasses discussed in the previous Section. Our approach is based on the idea that 
each block for any target processor q is formed by the mappings described in the 
lemmas below: 

 
Lemma 1 
The first bytes of every target block in an array redistribution problem, derive from 
the communication of processor pairs p,q  that belong to a specific set of r in total 
processor classes V =k0, k1, k2... kr-1 that satisfy: 
 
                                               -x mod g =k, x ∈   [0..r-1]                                          (4) 
 
PROOF: Equation (1) is rewritten as mQs -lPr= pr-qs + (y-x). We know that g=gcd 
(Pr,Qs), making mQs-lPr a multiple of g. This means that there is an integer λ, such 
that: mQs-lPr=λg. If we also set ξ=x-y, Equation (1) is rewritten as: 
 
                                                      -λg-ξ=pr-qs                                                            (5) 
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If we divide both parts of Equation (5) with g, we get: (λg-ξ) mod g = (pr-qs) mod g 
 (λg mod g)-(ξ mod g) = (pr-qs) mod g -ξ mod g = (pr-qs) mod g. Since ξ=x-y, 

it is obvious that -ξ=y-x. Therefore, we obtain the equation: 
⇒ ⇒

 
                                           (y-x) mod g = (pr-qs) mod g                                             (6) 
 
Considering that y is the local position of a data element in the target distribution 
block, if we set y=0 we get the proof of the lemma. 
 
DEFINITION 2: Every class k that satisfies equation (4) will be referred to as 
generator class. The source processors in each generator class are called generator 
processors or generator nodes. 
 

Obviously, each target block has its own generator node. The number of 
generator classes is r since x ∈  [0..r-1]. We define the vol function that computes the 
elements a generator node p contributes to a target block m that will be redistributed 
to a target node q. In other words, the vol function returns the number of quadruples 
(l,m,x,y)= (l,m,x,0) that satisfy the redistribution equation (1). 

 
                          vol (p,q)= {(l,m,x,y)=(l,m,x,0): mQs- lPr=pr-qs+(x-y) }                  (7) 
 
Lemma 2 
Two neighboring processors pγ, pδ send data elements on the same target distribution 
block of the same receiving processor q if processor pairs pγ, q and pδ,q belong the 
same superclass. 
 
PROOF: We will show that if pγ ,q ∈  k1 and pδ,q ∈  k2, the distance between k1 and 
k2 equals r mod g. Assume that processors pγ and pδ send data elements on the same 
block of receiving processor q and pγ,q ∈  k1, pδ,q ∈  k2. For processor pair pγ,q 
equation (6) is rewritten as: (y-x) mod g= (pγr-qs) mod g.  Similarly, for pδ,q we have 
(y-x) mod g =( pδ r-qs) mod g. With no loss of generality, we assume that the indices 
of two neighboring source nodes pγ, pδ differ by 1 (the proof is similar for any other 
integer value). Thus, (y-x) mod g = (pδr-qs) mod g becomes: (y-x) mod g= (pγr+ r-qs) 
mod g. We summarize the set of equations for the two processor pairs: 
 
 (pγr-qs) mod g =k1, for (pγ,q) 
                                                                                                                                     (8) 
 (pγr+ r-qs) mod g= k2, for (pδ,q) 
 

 
(y-x) mod g = 

To prove the lemma, we simply compute dist (k1 ,k2) for the following cases: 
(i) pγr+ r-qs <g and r<g, (ii) pγr+ r-qs <g and r≥g, and (iii)  pγr+ r-qs >g.   
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Based on the lemmas above, we formally describe our sending algorithm for 
array redistribution. There are two subphases: (i) Target blocks formulation phase, 
and (ii) Block redistribution phase. The target blocks formulation phase involves 
interprocessor communication between all source nodes of each superclass. This 
results in blocks of size s being stored in the memory of the generator nodes of each 
superclass. The block redistribution phase includes all the communications required 
to transfer the blocks from the generator nodes to the target processors. One more 
function needs to be defined beforehand; the stepping function S that will be used to 
compute the next class-member of a superclass as follows: 
 
 r mod g, if (r mod g) + k <g  
                                                       (9) 
                                  (r mod g)-g, if (r mod g) + k ≥ g 
 

 
S(k) = 

 
Phase 1: Forming target blocks in the generator nodes’ memory 
 
STEP 1: Start from a generator class k0. Source nodes p, p∈   [0..P-1]) are scheduled 
to send s'=vol (p,q) to destination processors q (q ∈  [0..Q-1]) to form a target block.  
STEP 2: If s'=s the target block has been formed. We pick another generator class 
and move to step 1. If s'<s, there remain to be added a number of elements from other 
nodes. Move to step 3. 
STEP 3: Use the stepping function S to get the next class-member of the superclass 
k1:k1=k0+S(k0).There are two cases:  
Case 3.1: k1 is also a generator class: In this case, all sources in k1 contain both the 
last data elements (s-s' in total) of block m and the initial elements of another target 
block indexed m', for which they are generator nodes. The target block m is formed in 
the generator nodes' memory by passing a message from source nodes of k1 to source 
nodes of k0 (generator nodes of m).  
Case 3.2: k1 is not a generator class: In this case, all Cp,q elements are appended to m. 
A message of size Cp,q is passed from all source nodes of k1 to all source nodes of k0. 
There are two cases:  
Case 3.2.1: If s'+Cp,q<s: We set s'=s'+Cp,q and we use the stepping function S to 
obtain the class that contains some or all the remaining elements: k2=k1+S(k1).  We 
return to case 3.1. 
Case 3.2.2: s'+Cp,q=s: Block m has been formed.  Go to STEP 1. 
 
Phase 2: Redistribution of data blocks 
 
STEP 1: Select a generation class. Send the blocks of size s from the generator nodes 
to the proper targets. 
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STEP 2: Repeat STEP 1 until all generation classes have been selected and all 
messages have been sent.  

4. Applying the MC Scheme in Bidirectional Processor Rings 

4.1 The Communication Model 
 In this paragraph, we show how the message combining MC is utilized on 
bidirectional processor rings. Initially, let us consider a ring Tn where n is the number 
of nodes. The w-axis and z-axis evenly partition the ring into four quadrants. Each 
processor pi on the ring has a maximum of five neighbors. If we denote Ni the set of 
neighbors for processor pi, we have: Ni= {pi

left, pi
right, pi

w, pi
z, pi

wz} where pi
w, pi

z are the 
nodes symmetric to pi with respect to the w-axis and z-axis, pi

left, pi
right are the nodes 

that lie next to pi in both directions of the ring, and pi
wz is the node symmetric to pi 

with respect to the origin [Tseng, Gupta (1996)]. 
 In this paper, we assume a communication model with full-duplex channels, 
where each node can simultaneously send and receive messages, while it can 
communicate with all its neighboring nodes. Assuming that pi and pj are two distinct 
nodes, we can define the necessary communications on the ring for the formulation of 
target blocks in the generator nodes' memory R+, and for the redistribution of data 
blocks, R-. Each of the two phases is composed of a number of directed paths; at any 
time, a message of R+ is sent out in one direction from the origin, while a message of 
R- is sent out in the opposite direction. 

4.2 Forming the Target Blocks 
Messages of R+ do not use the links that connect symmetric nodes with 

respect to z-axis or w-axis. As shown in the previous paragraph, the idea behind the 
formulation of target blocks in the generator nodes' memory, is to provide a set of 
communications on a set of β neighboring nodes, where β is the number of classes in 
each superclass. Figure 1 shows a redistribution where there are four superclasses V0-
V3, each having β =4 classes. 

The generator nodes of the superblocks are Pj, Pi ,Pi
z, and Pj

z  respectively: 
V0= {Pi

wz Pj
z Pi

z Pi Pj}, V1= {Pj
wz  Pi

wz Pj
z Pi

z Pi}, V2= {Pi
w Pj

wz  
Pi

wz Pj
z Pi

z}, V2= {Pj
w Pi

w Pj
wz  Pi

wz Pj
z}. For the ease of showing how 

communications are performed on the ring, assume a processor ring as shown in 
Figure 2 and that R+ starts at time t=1. At time t=1, the first member of each chain 
forwards the proper data to its right neighboring node. Through these 
communications, the last bytes of each target block will be redistributed, from source 
nodes Pi

wz, Pj
wz, Pi

w and Pj
w to generator nodes Pj, Pi, Pi

z, and Pj
z respectively. In other 

words, link Pi
wz Pj

z handles communication performed on chain V0, Pj
wz  Pi

wz   is 
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busy with communication performed on V1, and links Pi
w Pj

wz and Pj
w  Pi

w handle 
the communications on superclasses V2 and V3 respectively. 
 
 

 
Figure 1: Forming target blocks in the generator nodes’ memory (R+) 

 
At time t=2, communication on V0 is handled by link Pj

z  Pi
z ; this means that Pj

z 
creates a new message composed of: (1) the elements from its "left" neighbor Pi

wz, 
and (2) the elements that Pj

z forwards to the generator node of V0, Pj. Similarly, Pi
wz 

 Pj
z that previously handled V0, now handles V1, and links Pj

wz  Pi
wz and Pi

w  
Pj

wz, are busy with communications on V2 and V3 respectively. Continuing in this 
manner, at time t=4, complete target blocks m0, m1, m2, and m3 have been temporarily 
stored in memory of the generator nodes Pj, Pi ,  Pi

z, Pj
z respectively. 

Assuming that a superclass includes β classes, communication involves 
message passing through β-1 links. According to the pattern described for the Tn ring, 
communication is implemented in a pipeline fashion, therefore the cost of forming a 
block in the memory of a generator node equals the cost of communication between 
all processor pairs p,q in one superclass CV:   

 

                                                                                                           (10) ∑
−

=

=
1

1
,

β

i
qpv CC

where Cp,q is the data volume that each source in the superclass p contributes to the 
formulation of a data block to a target node q. 
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Figure 2: Communication on neighboring nodes 

 
 The total cost of R+ is the sum of all communications that incur in a total of r 
(see Lemma 1 and Definition 2) superclasses:  

                                                                                                           (11) ∑
=

=+

r

i
VR i

CC
1

4.3 Redistributing the Target Blocks 
 Messages of R- are also completed in a set of directed paths; after a target 
block has been formed, it is sent out in the opposite direction than the messages of 
phase R+. Moreover, messages of R- do use the links that connect symmetric nodes 
with respect to z-axis or w-axis, in both directions. We have predefined dedicated 
communication paths, so that the nodes exchange data blocks in accordance to the 
quadrant they lie. These paths are shown in Figure 3. 

When an entire target block originates from a generator node p to a receiving 
node q, communication is performed with respect to the quadrant where p,q are 
located as the following cases indicate: 
Case 1: p,q are symmetric with respect to z or w axis (See Figure 3(a))  
1.1 p=pi, q=pi

wz or vice versa: p sends to q through link pi  pi
wz or pi

wz  pi
1.2 p=pi ,q=pi

w or vice versa: p sends to q through link pi  pi
w or piw   pi  

1.3 p=pi,, q=pi
z or vice versa: p sends to q through link pi   pi

z or pi
z  pi
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Figure 3: Predefined directed paths for R- 

 

Case 2:p=pi and q is located between pj
wz and pi

w (see Figure 3(b)): p transfers the 
block to its symmetric node pi

wz. The block is then distributed to the target node 

through processors  pi
wz  pj

wz   …… . The small cycle adjacent to 
the arrow from p

rightwz

jp
leftw

ip
j
wz to pi

w indicates that all processors up to pi
w are included in the 

path, but not pi
w. 

 
Case 3: p=pi and q is located between =piz and pi

wz (see Figure 3(c)): p transfers the 
block to its symmetric node pi

z. The block is then redistributed to the target node via 
processors pi

z  pj
z  pi

wz.   
 
Case 4:p=p and q is located between pi

w and pj (see Figure 3(d)): p transfers the block 
to its symmetric node pi

w. The block is redistributed to the target node through 
processors pi

w  pj
w  ....  pj.  

 
 Since messages cannot be simultaneously transmitted on a single channel in 
the same direction, redistribution is implemented in a set of communications between 
couples of quadrants of the ring. The cost of redistributing the target blocks in any 
array redistribution problem is at most 3sa (n/4)2, where a is the startup cost. For 
proof, consider the communication between two quadrants of the ring. There are at 
most n/4 messages to be transmitted from the generator (source) nodes to the 
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receiving nodes. The startup cost of each message is a.  Since message transmission 
works in a pipeline fashion, the total delay of each step equals the maximum number 
of links that messages go through at each step, that is, n/4 links. This gives a total 
delay of s(n/4)2 for the communication between two quadrants. Since there exist 6 
couples in total, we need 3 communication steps to complete the redistribution of 
target blocks. Thus, the total delay is at most 3sa (n/4)2. 

5. Conclusions  
In this work, we have proposed a message combining scheme for 

redistribution of arrays for bidirectional rings. The proposed strategy has an important 
feature; it assures that neighboring processors can communicate in such an order that 
results in a data block formed in the memory of the relay processors while the data 
elements are stored in correct order. Hence, each relay only needs to transfer the 
block to the target that simply stores the block to the proper memory location.  
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