
ARRAY REDISTRIBUTION ALGORITHMS FOR
BIDIRECTIONAL PROCESSOR RINGS

Stavros Souravlas1, Athanasios Margaris2, and Manos Roumeliotis3

University of Macedonia, Applied Informatics Department,
156 Egnatia St, 54006, Thessaloniki, Greece

sourstav@uom.gr1, amarg@uom.gr2, manos@uom.gr3

Abstract

The Block Cyclic Array Redistribution problem occurs in many important applications in
parallel computing. In this paper, we consider this problem on bidirectional processor rings.
We present a message combining (MC) approach that splits any array redistribution problem
in a series of broadcasts where all sources send messages of the same size, thus a balanced
traffic load is achieved. Unlike existing array redistribution algorithms, the message
combining scheme introduced in this work eliminates the need for data reorganization in the
memory of the source and target processors. Moreover, the processing of the scheduled
broadcasts is pipelined, thus the total cost of redistribution is reduced.

Keywords: Block cyclic array redistribution, classes, superclasses, pipeline, processor rings

1. Introduction-Related Work
The problem of array redistribution between several processors is very

important, affecting the performance of parallel programs. Many complicated parallel
computing applications are composed of several stages. As the program proceeds
from one stage to another, it may require different and efficient redistribution of data
between several processor sets. Such applications are the alternate direction implicit
method and the multidimensional Fast Fourier Transform [Kaushik et. Al. (1994)].

The principal issues that should be taken into account for an efficient solution
of the array redistribution problem are the index computation overheads, the total
communication overhead, and the data reorganization. The index computation
overheads consist of computing the target processor and the memory positions where
each element will be located. The total communication overheads incur during data
redistribution between parallel processors. Data reorganization is a very important
issue for runtime array redistribution; redistributed array elements must be
reorganized in every communication step so that, the data blocks sent and received
are contiguous in the data array [N. S. Sundar et. Al. (2001)].

Many methods for array redistribution can be found in the literature. In [C.-H.
Hsu et. Al. (2001), Huang and Chu (2006)], processor mapping techniques for
dynamic data redistribution are described. Thakur et al. [Thakur et. Al. (1996)] also

11th Panhellenic Conference in Informatics 178

provided algorithms for array redistribution. Their work is divided into two cases: the
general case of Cyclic(x) to Cyclic(y) redistribution, where there is no relation
between x and y, and a special case where x is a multiple of y or y is a multiple of x.
 Walker and Otto [D.W Walker, S.W Otto (1996)] worked on the problem of
data redistribution from cyclic(x) to cyclic(Kx) on a grid of P processors. They
provided synchronized and unsynchronized schemes that were free of conflicts.
Desprez et al [Desprez et. Al. (1998)] focused their effort on solving the general
redistribution problem, moving from cyclic (r) on a P-processor grid, to cyclic (s) on
a Q-processor grid. The main idea behind their algorithm was to create homogeneous
communication patterns which they called classes. Processor pairs in a certain class,
exchanged messages of the same size.

In this paper, we focus on scheduling block cyclic array redistribution on a
processor ring. We present a block-cyclic array redistribution strategy where target
blocks are formed by exchanging messages between specified sets of neighbouring
source processors, with no need for data reorganization. This strategy allows for equal
sized messages to be exchanged at any time in any direction of the network, thus,
messages can be pipelined. This makes the scheme particularly efficient in networks
with bounded node degree like rings. The rest of the paper is organized as follows: In
Section 2 we briefly present the preliminaries for the block cyclic redistribution
problem. In Section 3, we present our message combining algorithm (named MC). In
Section 4, we show how MC applies on a bidirectional processor ring and perform
cost analysis. Section 5 concludes the paper.

2. Preliminaries
 Consider an array of M elements that is initially distributed CYCLIC (r) on P
processors, where r is the block size. The index of blocks is l, where l ∈ [0..M/Pr)
and the local position of a data element inside a block is x. Our aim is to provide a
target distribution CYCLIC (s) to a set of Q processors. The block size of the target
distribution is s, the index of blocks is given by m, where m [0..M /Qs) and the local
position of a data element inside a block is given by y. The distribution from
CYCLIC(r) on P processors to CYCLIC (s) on Q processors is described by the
redistribution equation:

 (lP+p)r+w=(mQ+q)s+z (1)

where (p,q) is a set of communicating processors.

The number of quadruples (l,m,x,y) that satisfy (1) is the number of elements
redistributed from p to q or the communication cost Cp,q. Block cyclic redistribution is
periodical and it repeats for every L=LCM (Pr,Qs) data elements, where L is the least
common multiplier (LCM) of (Pr,Qs). According to Desprez et al. [Desprez et. Al.
(1998)], a processor pair belongs to a class b(k) if the following equality is satisfied:

Computer / Sensor Hardware and Architecture 179

 (pr-qs) mod g=k (2)

where g is the greatest common divisor of Pr,Qs, that is g=gcd(Pr,Qs). The number
of classes that exists in a redistribution problem is g.
 We now extend the idea of classes and introduce the superclasses. The use of
superclasses is a key idea for implementing the message combining scheme that will
be introduced in the next paragraph. Initially, let us define the function dist (k1,k2)
that computes the distance between two classes k1 and k2 such that:

dist (k1,k2) =

k2-k1, if k2 ≥ k1

 (3)
g-k1+k2, otherwise

DEFINITION 1: A group of classes V=k1, k2...kn-1 , kn that differ by r mod g, that is:
dist (k1,k2)= dist (k2,k3)= …..= dist (kn-1,kn)= r mod g, is called superclass.

In the following paragraph we will show how the communication between
processor pairs from a superclass forms target blocks redistributed to receiving nodes.

3. The Message Combining Scheme
In this Section we present the message combining (MC) scheme based on the

superclasses discussed in the previous Section. Our approach is based on the idea that
each block for any target processor q is formed by the mappings described in the
lemmas below:

Lemma 1
The first bytes of every target block in an array redistribution problem, derive from
the communication of processor pairs p,q that belong to a specific set of r in total
processor classes V =k0, k1, k2... kr-1 that satisfy:

 -x mod g =k, x ∈ [0..r-1] (4)

PROOF: Equation (1) is rewritten as mQs -lPr= pr-qs + (y-x). We know that g=gcd
(Pr,Qs), making mQs-lPr a multiple of g. This means that there is an integer λ, such
that: mQs-lPr=λg. If we also set ξ=x-y, Equation (1) is rewritten as:

 -λg-ξ=pr-qs (5)

11th Panhellenic Conference in Informatics 180

If we divide both parts of Equation (5) with g, we get: (λg-ξ) mod g = (pr-qs) mod g
 (λg mod g)-(ξ mod g) = (pr-qs) mod g -ξ mod g = (pr-qs) mod g. Since ξ=x-y,

it is obvious that -ξ=y-x. Therefore, we obtain the equation:
⇒ ⇒

 (y-x) mod g = (pr-qs) mod g (6)

Considering that y is the local position of a data element in the target distribution
block, if we set y=0 we get the proof of the lemma.

DEFINITION 2: Every class k that satisfies equation (4) will be referred to as
generator class. The source processors in each generator class are called generator
processors or generator nodes.

Obviously, each target block has its own generator node. The number of
generator classes is r since x ∈ [0..r-1]. We define the vol function that computes the
elements a generator node p contributes to a target block m that will be redistributed
to a target node q. In other words, the vol function returns the number of quadruples
(l,m,x,y)= (l,m,x,0) that satisfy the redistribution equation (1).

 vol (p,q)= {(l,m,x,y)=(l,m,x,0): mQs- lPr=pr-qs+(x-y) } (7)

Lemma 2
Two neighboring processors pγ, pδ send data elements on the same target distribution
block of the same receiving processor q if processor pairs pγ, q and pδ,q belong the
same superclass.

PROOF: We will show that if pγ ,q ∈ k1 and pδ,q ∈ k2, the distance between k1 and
k2 equals r mod g. Assume that processors pγ and pδ send data elements on the same
block of receiving processor q and pγ,q ∈ k1, pδ,q ∈ k2. For processor pair pγ,q
equation (6) is rewritten as: (y-x) mod g= (pγr-qs) mod g. Similarly, for pδ,q we have
(y-x) mod g =(pδ r-qs) mod g. With no loss of generality, we assume that the indices
of two neighboring source nodes pγ, pδ differ by 1 (the proof is similar for any other
integer value). Thus, (y-x) mod g = (pδr-qs) mod g becomes: (y-x) mod g= (pγr+ r-qs)
mod g. We summarize the set of equations for the two processor pairs:

 (pγr-qs) mod g =k1, for (pγ,q)
 (8)
 (pγr+ r-qs) mod g= k2, for (pδ,q)

(y-x) mod g =

To prove the lemma, we simply compute dist (k1 ,k2) for the following cases:
(i) pγr+ r-qs <g and r<g, (ii) pγr+ r-qs <g and r≥g, and (iii) pγr+ r-qs >g.

Computer / Sensor Hardware and Architecture 181

Based on the lemmas above, we formally describe our sending algorithm for
array redistribution. There are two subphases: (i) Target blocks formulation phase,
and (ii) Block redistribution phase. The target blocks formulation phase involves
interprocessor communication between all source nodes of each superclass. This
results in blocks of size s being stored in the memory of the generator nodes of each
superclass. The block redistribution phase includes all the communications required
to transfer the blocks from the generator nodes to the target processors. One more
function needs to be defined beforehand; the stepping function S that will be used to
compute the next class-member of a superclass as follows:

 r mod g, if (r mod g) + k <g
 (9)
 (r mod g)-g, if (r mod g) + k ≥ g

S(k) =

Phase 1: Forming target blocks in the generator nodes’ memory

STEP 1: Start from a generator class k0. Source nodes p, p∈ [0..P-1]) are scheduled
to send s'=vol (p,q) to destination processors q (q ∈ [0..Q-1]) to form a target block.
STEP 2: If s'=s the target block has been formed. We pick another generator class
and move to step 1. If s'<s, there remain to be added a number of elements from other
nodes. Move to step 3.
STEP 3: Use the stepping function S to get the next class-member of the superclass
k1:k1=k0+S(k0).There are two cases:
Case 3.1: k1 is also a generator class: In this case, all sources in k1 contain both the
last data elements (s-s' in total) of block m and the initial elements of another target
block indexed m', for which they are generator nodes. The target block m is formed in
the generator nodes' memory by passing a message from source nodes of k1 to source
nodes of k0 (generator nodes of m).
Case 3.2: k1 is not a generator class: In this case, all Cp,q elements are appended to m.
A message of size Cp,q is passed from all source nodes of k1 to all source nodes of k0.
There are two cases:
Case 3.2.1: If s'+Cp,q<s: We set s'=s'+Cp,q and we use the stepping function S to
obtain the class that contains some or all the remaining elements: k2=k1+S(k1). We
return to case 3.1.
Case 3.2.2: s'+Cp,q=s: Block m has been formed. Go to STEP 1.

Phase 2: Redistribution of data blocks

STEP 1: Select a generation class. Send the blocks of size s from the generator nodes
to the proper targets.

11th Panhellenic Conference in Informatics 182

STEP 2: Repeat STEP 1 until all generation classes have been selected and all
messages have been sent.

4. Applying the MC Scheme in Bidirectional Processor Rings

4.1 The Communication Model
 In this paragraph, we show how the message combining MC is utilized on
bidirectional processor rings. Initially, let us consider a ring Tn where n is the number
of nodes. The w-axis and z-axis evenly partition the ring into four quadrants. Each
processor pi on the ring has a maximum of five neighbors. If we denote Ni the set of
neighbors for processor pi, we have: Ni= {pi

left, pi
right, pi

w, pi
z, pi

wz} where pi
w, pi

z are the
nodes symmetric to pi with respect to the w-axis and z-axis, pi

left, pi
right are the nodes

that lie next to pi in both directions of the ring, and pi
wz is the node symmetric to pi

with respect to the origin [Tseng, Gupta (1996)].
 In this paper, we assume a communication model with full-duplex channels,
where each node can simultaneously send and receive messages, while it can
communicate with all its neighboring nodes. Assuming that pi and pj are two distinct
nodes, we can define the necessary communications on the ring for the formulation of
target blocks in the generator nodes' memory R+, and for the redistribution of data
blocks, R-. Each of the two phases is composed of a number of directed paths; at any
time, a message of R+ is sent out in one direction from the origin, while a message of
R- is sent out in the opposite direction.

4.2 Forming the Target Blocks
Messages of R+ do not use the links that connect symmetric nodes with

respect to z-axis or w-axis. As shown in the previous paragraph, the idea behind the
formulation of target blocks in the generator nodes' memory, is to provide a set of
communications on a set of β neighboring nodes, where β is the number of classes in
each superclass. Figure 1 shows a redistribution where there are four superclasses V0-
V3, each having β =4 classes.

The generator nodes of the superblocks are Pj, Pi ,Pi
z, and Pj

z respectively:
V0= {Pi

wz Pj
z Pi

z Pi Pj}, V1= {Pj
wz Pi

wz Pj
z Pi

z Pi}, V2= {Pi
w Pj

wz
Pi

wz Pj
z Pi

z}, V2= {Pj
w Pi

w Pj
wz Pi

wz Pj
z}. For the ease of showing how

communications are performed on the ring, assume a processor ring as shown in
Figure 2 and that R+ starts at time t=1. At time t=1, the first member of each chain
forwards the proper data to its right neighboring node. Through these
communications, the last bytes of each target block will be redistributed, from source
nodes Pi

wz, Pj
wz, Pi

w and Pj
w to generator nodes Pj, Pi, Pi

z, and Pj
z respectively. In other

words, link Pi
wz Pj

z handles communication performed on chain V0, Pj
wz Pi

wz is

Computer / Sensor Hardware and Architecture 183

busy with communication performed on V1, and links Pi
w Pj

wz and Pj
w Pi

w handle
the communications on superclasses V2 and V3 respectively.

Figure 1: Forming target blocks in the generator nodes’ memory (R+)

At time t=2, communication on V0 is handled by link Pj

z Pi
z ; this means that Pj

z
creates a new message composed of: (1) the elements from its "left" neighbor Pi

wz,
and (2) the elements that Pj

z forwards to the generator node of V0, Pj. Similarly, Pi
wz

 Pj
z that previously handled V0, now handles V1, and links Pj

wz Pi
wz and Pi

w
Pj

wz, are busy with communications on V2 and V3 respectively. Continuing in this
manner, at time t=4, complete target blocks m0, m1, m2, and m3 have been temporarily
stored in memory of the generator nodes Pj, Pi , Pi

z, Pj
z respectively.

Assuming that a superclass includes β classes, communication involves
message passing through β-1 links. According to the pattern described for the Tn ring,
communication is implemented in a pipeline fashion, therefore the cost of forming a
block in the memory of a generator node equals the cost of communication between
all processor pairs p,q in one superclass CV:

 (10) ∑
−

=

=
1

1
,

β

i
qpv CC

where Cp,q is the data volume that each source in the superclass p contributes to the
formulation of a data block to a target node q.

11th Panhellenic Conference in Informatics 184

Figure 2: Communication on neighboring nodes

 The total cost of R+ is the sum of all communications that incur in a total of r
(see Lemma 1 and Definition 2) superclasses:

 (11) ∑
=

=+

r

i
VR i

CC
1

4.3 Redistributing the Target Blocks
 Messages of R- are also completed in a set of directed paths; after a target
block has been formed, it is sent out in the opposite direction than the messages of
phase R+. Moreover, messages of R- do use the links that connect symmetric nodes
with respect to z-axis or w-axis, in both directions. We have predefined dedicated
communication paths, so that the nodes exchange data blocks in accordance to the
quadrant they lie. These paths are shown in Figure 3.

When an entire target block originates from a generator node p to a receiving
node q, communication is performed with respect to the quadrant where p,q are
located as the following cases indicate:
Case 1: p,q are symmetric with respect to z or w axis (See Figure 3(a))
1.1 p=pi, q=pi

wz or vice versa: p sends to q through link pi pi
wz or pi

wz pi
1.2 p=pi ,q=pi

w or vice versa: p sends to q through link pi pi
w or piw pi

1.3 p=pi,, q=pi
z or vice versa: p sends to q through link pi pi

z or pi
z pi

Computer / Sensor Hardware and Architecture 185

Figure 3: Predefined directed paths for R-

Case 2:p=pi and q is located between pj
wz and pi

w (see Figure 3(b)): p transfers the
block to its symmetric node pi

wz. The block is then distributed to the target node

through processors pi
wz pj

wz …… . The small cycle adjacent to
the arrow from p

rightwz

jp
leftw

ip
j
wz to pi

w indicates that all processors up to pi
w are included in the

path, but not pi
w.

Case 3: p=pi and q is located between =piz and pi

wz (see Figure 3(c)): p transfers the
block to its symmetric node pi

z. The block is then redistributed to the target node via
processors pi

z pj
z pi

wz.

Case 4:p=p and q is located between pi

w and pj (see Figure 3(d)): p transfers the block
to its symmetric node pi

w. The block is redistributed to the target node through
processors pi

w pj
w pj.

 Since messages cannot be simultaneously transmitted on a single channel in
the same direction, redistribution is implemented in a set of communications between
couples of quadrants of the ring. The cost of redistributing the target blocks in any
array redistribution problem is at most 3sa (n/4)2, where a is the startup cost. For
proof, consider the communication between two quadrants of the ring. There are at
most n/4 messages to be transmitted from the generator (source) nodes to the

11th Panhellenic Conference in Informatics 186

receiving nodes. The startup cost of each message is a. Since message transmission
works in a pipeline fashion, the total delay of each step equals the maximum number
of links that messages go through at each step, that is, n/4 links. This gives a total
delay of s(n/4)2 for the communication between two quadrants. Since there exist 6
couples in total, we need 3 communication steps to complete the redistribution of
target blocks. Thus, the total delay is at most 3sa (n/4)2.

5. Conclusions
In this work, we have proposed a message combining scheme for

redistribution of arrays for bidirectional rings. The proposed strategy has an important
feature; it assures that neighboring processors can communicate in such an order that
results in a data block formed in the memory of the relay processors while the data
elements are stored in correct order. Hence, each relay only needs to transfer the
block to the target that simply stores the block to the proper memory location.

6. References
Desprez F.,.Dongarra J., Petitet A., Randriamaro C., Robert Y. (1998), "Scheduling

Block-Cyclic Array Redistribution", IEEE Transactions on Parallel and
Distributed Systems, Vol.9, NO.2, February 1998, pp.192-205.

Hsu C.H., Chung Y.C., Yang D.L, and Dow C.R. (2001), "A Generalized Processor
Mapping Technique for Array Redistribution", IEEE Transactions on
Parallel and Distributed Systems, Vol.12, NO.7, pp.743-757.

Huang J.W, and Chu C.P (2006), "An Efficient Communication Scheduling Method
for the Processor Mapping Technique Applied Data Redistribution",
TheJournal of Supercomputing, 37, pp.297-318.

Kaushik S.D., Huang C.H., Johnson R.W.and Sadayappan P.(1994), “An approach to
Communication-Efficient Data Redistribution”, 8th ACM International
Conference on Supercomputing, July 1994, Manchester, England.

Sundar N.S., Jayasimha D.N, Dhabaleswar K.P., and Sadayappan P. (2001), "Hybrid
Algorithms for Complete Exchange in 2D Meshes", IEEE Transactions on
Parallel and Distributed Systems, pp.1201-1218.

Thakur R, Choudhary A., Ramanujam J. (2001), "Efficient Algorithms For Array
Redistribution", IEEE Transactions on Parallel and Distributed Systems,
Vol.7, NO. 6, June 1996, pp.587-594.

Tseng Y.C., and Gupta S.K.S. (1996), "All-to-All Personalized Communication in a
Wormhole-Routed Torus", IEEE Transactions on Parallel and
DistributedSystems, Vol.7, NO. 5, May 1996, pp.498-505.

Walker D.W, and Otto S.W (1996), "Redistribution of Block-Cyclic Data
Distributions Using MPI", Concurrency: Practice and Experience, vol.8,
no.9, pp.707-728.

