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Abstract 

Presented here is AMPLE, a platform-based design methodology and its realization in a soft-
ware tool for automatic mapping and performance optimization of algorithms to embedded 
system architectures. Source code of a high level programming language is initially analyzed 
through the use of a set of profiling tools. Analysis results provide insight on both the compu-
tational intensive tasks as well as information on variable usage/sharing requirements. An ar-
chitectural configuration is then selected based on a typical CPU-FPGA interconnection 
scheme. The code is divided into parts which will execute on a microprocessor and parts 
which will be handled by special purpose hardware (on the FPGA of the platform). Shared 
memory areas defined through the use of common variables are also mapped to the memory 
components of the platform. Nested loops are of special interest since they are usually the 
most computationally intensive tasks and are automatically parallelized and implemented in 
hardware in the platform’s FPGA. The presented methodology can effectively reduce design 
time and thus minimize time-to-market requirements as well as provide a considerable per-
formance improvement in the resulting system. 
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1. Introduction 
The design of embedded systems from high level specifications entails conformance 
to two basic requirements: Minimization of the time-to-market design requirement 
and exploitation of the desirable trade-off between speed, area, cost, power consump-
tion and other implementation features. The former is crucial for end-product market-
ing success while the latter defines the quality and efficiency of the final product. The 
designer's flexibility of experimenting with different architectural schemes at various 
levels of abstraction, migrating parts of the specification from software to dedicated 
hardware (on FPGAs or as ASICs) and selecting processing elements from a great va-
riety of pre-designed off-the-shelf components forms a very large design space within 
which the best design trade-off needs to be explored in very strict time-to-market lim-
its. Towards this goal, both academic and commercial tools have been presented 
which automate parts of the design process and offer easy experimentation and 
evaluation at higher levels of abstraction of different design choices. The successful 
application of those tools is greatly dependent on the initial information that is avail-
able to the designer concerning characteristics of the initial application's specification. 
The usefulness of such knowledge is two-fold. On one hand it assists the designer re-
fine his/her initial specification and on the other hand it can lead to a more guided ex-
ploration of the design space and thus better conformance to the desired trade-off in 
smaller time-to-market limits.  

Presented here is AMPLE (Automatic MaPping of aLgorithms for Embedded sys-
tems). Source code of a C-like programming language is partitioned into tasks and 
analyzed through the use of a set of profiling tools in order to present high level in-
formation/approximations on the computational/communication intensity of each task 
and on the inter-task communication requirements. The source code is then divided 
into tasks which will execute on a CPU and tasks which will be mapped to special 
purpose hardware. The complexity of the code, its variables and the dependencies be-
tween them, the computational time required for the execution and the frequency of 
execution are the main criteria for code partitioning and characterization. Based on 
the communication analysis of the initial code a specific interconnection scheme is 
selected from a set of predefined CPU-FPGA platforms. Nested loops are of special 
interest since programs usually spent a lot of execution time within loops. For that 
reason, nested loops are not only implemented in hardware but prior to that they are 
automatically parallelized in special purpose architectures and then implemented in 
the platform’s FPGA component. The methodology/tool leads to the implementation 
of an embedded system by automatically compiling tasks that will be executed in 
Software and implementing in a synthesizable Hardware Description Language 
(VHDL or Verilog) parts that will be executed in hardware. 
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The rest of the paper is structured as follows. Section 2 discusses related work. Sec-
tion 3 describes the proposed system. Section 4 discusses some implementation de-
tails. The last section summarizes the features of the proposed platform and presents 
some plans for future research work. 

2. Related Work 
In mid 90’s the complexity and the density of digital circuits resulted in new methods 
for high level hardware synthesis. In these methods, hardware is implemented based 
on specifications given in a high level of abstraction. An overview of high level 
hardware synthesis methodologies is provided in [Gadjski et. Al. (1994)]. In [Berkley 
HW/SW Codesign grp.(1994)] POLIS produces hardware, based on specifications de-
scribed by finite state machines (with some extensions) while in [Fin et. Al. (2001)] 
the specification language is System-C, an extension to C for supporting processes 
and communication mechanisms between them. In [Kambe et. Al. (2001)] a tool is 
presented based on BachC, a subset of C enhanced with instructions and structures for 
hardware synthesis.  

The computational complexity and the density of the digital circuits kept increasing 
with remarkable rates. The high level hardware synthesis methods could not cover 
satisfactorily the increasing demands and the time-to-market limits, mainly due to two 
reasons: (i) design from scratch was too expensive in terms of time and money and 
(ii) the high density of integrated circuits resulted in a high latency, comparable with 
that of transmitting signals over busses. High level hardware synthesis methodologies 
were partially substituted from system level synthesis. Now the basic structural units 
are more complicated modules (CPUs, memories, special purpose hardware, etc), 
simplifying the designers’ task and reducing the cost. Typical examples of system 
level synthesis methodologies are [Petrot et. Al. (2001)][Rowson et. Al. 
(1997)][Nandi et. Al. (2001)][Martin et. Al. (2002)]. In [Petrot et. Al. (2001)] a sys-
tem which produces embedded systems from SDL (Synchronous Data Language) is 
described and in [Martin et. Al. (2002)] another system is presented based on UML 
(Unified Modeling Language) this time. 

Some important limitations for the system level synthesis methodologies include the 
complexity of the interface of the structural units which some times resulted even in 
the redesign of some units so that they are customized for specific applications. A 
more recent approach is the platform based design, where the designer selects from 
pre-designed (parameterized) platforms for embedded systems. From the behavioral 
description of the system, the implementation platform is selected. The source code is 
divided into parts which will execute on CPUs and parts which will be mapped on 
dedicated hardware. Two platform based designs for embedded systems are presented 
in [Sangiovanni-Vincentelly et. Al. (2002)] and [CoWare,INC (2004)]. 
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The proposed methodology preserves the merits of high-level synthesis by allowing 
the automating generation of the architectural sub-modules, allows design diversity 
since it separates interface from behavior, takes into consideration memory delays in 
the overall performance and can be applied to any platform based on the interconnec-
tion of a CPU and an FPGA. In other words, the methodology summarizes the advan-
tages of each design approach in a single design process. 

3. The Proposed Methodology 
In this section the architecture of AMPLE will be discussed. In Figure 1 a general 
overview of all design phases is shown.  

 

Source Code in C Code in C with Inline Directives
and Virtual Memory References

Platform Selection

C for Microprocessor

Nested Loops to Hardware

C COMPILER VERILOG 
SYNTHESIZER

EMBEDDED SYSTEM

Profiling and 
Hardware/Software 

Partitioning

GRAPHICAL USER 
INTERFACE

PROFILING

GRAPHICAL USER 
INTERFACE

Automatic 
ParallelizationInterfacing Analysis

Selected Platform and Task/
Memory mapping

 
Figure 1. The overall architecture. Rectangles represent components, ovals represent 

data 
The input to the platform is source code in C-like high-level programming language. 
The source code is fed to the hardware/software partitioning unit which (i) detects the 
nested loops and separates them from the rest of the code, (ii) generates static infor-
mation related to the nested loops necessary for possible further separation of the 
code, (iii) maps all variables, which are used within loops, to a virtual memory and 
(iv) converts all references to these variables to the virtual memory equivalents. 

The output of the hardware/software partitioning unit is presented to the user through 
a graphical interface. The user can evaluate the suggested segmentation and modify it 
if necessary. The modified code, enriched with the information associated with the 
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nested loops and the virtual memory representation, is used in an iterative procedure 
for platform selection. More specifically, from all possible ways of interconnection 
between the microprocessor, the FPGA, the memory or other structural elements, the 
most effective one is selected according to the cost, the response time, the size of the 
device and other general or application specific requirements of embedded systems. 
The user through a graphical representation compares all suggested alternative solu-
tions and selects the one that covers the specified design requirements. 

The nested loops which have been selected by the user are fed to the module “Auto-
matic Parallelization’. In this module, algorithms for the automatic parallelization of 
nested loops are applied according to the loop and the dependencies of the data. The 
parallelized loops are described in the Verilog hardware definition language. AMPLE 
provides clear separation between behavior and interfacing of the implemented com-
ponent. Therefore only the behavior of the parallelized implementation of the nested 
loop is defined. The interfacing of the hardware implementation to the rest of the plat-
form is defined in the “Interfacing Analysis” task which ensures transparent commu-
nication of the hardware and software tasks on the platform.  

The part of the code which will execute on a microprocessor is also enriched with (i) 
code which is responsible for the communication with the parts of the code that have 
been selected for hardware and (ii) code for the communication with the FPGA. 

The final step is to compile the resulting Verilog code by commercial tools and pro-
duce the embedded system. 

The proposed methodology presents some interesting features which differentiates it 
from similar platforms: 

• It detects the nested loops of the source code and extracts static features used for 
loop parallelization. These features can give a first estimation of the efficiency of 
the system before completing the whole design procedure 

• It allows the estimation of the communication costs and the experimentation with 
alternative solutions and interconnection architectures 

• It ensures efficiency through innovative loop parallelizing techniques 

4. Implementation Details through an Illustrative Example 
In order to clearly illustrate the proposed methodology a small example will be used 
as the input algorithm to AMPLE. Suppose the following code is given, which is a toy 
scale, simplified program for simulating the effects of a constant pressure applied to 
two sides of a surface: 
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long [100,100] s ; 
long [100,100] a ; 
long [100,100] k ; 
float [100,100] Pm; 
long zmax; 
float P,average, volume; 
int i,j,side,N,time,points; 
float Pall; 
 
average=0; 
volume=0; 
side=5; 
N=50; 
points=0; 
 
for (time=0;time<N;time++) 
{ 
  // calculation for one simulation 
circle 
  for (i=1;i<100;i++) 
    for (j=1;j<100;j++)   
    { 
     P=0.5*Pm[i-1,j]+0.5*Pm[i-2,j-2]; 
          if (s[i,j]<zmax) 
          { 
     s[i,j]+=k[i,j]*a[i,j]*P; 
     Pm[i,j]=(1-a[i,j]*P); 
          }  
          else  Pm[i,j]=P; 
    } 
} 

 

// calculation of average height 
for (i=0;i<100;i++) 

for(j=0;j<100;j++)  
     average+=s[i,j]; 

average=average/1000; 
 
// calculation of volume 
for (i=0;i<100;i++) 
  for (j=0;j<100;j++) 
    volume=volume+side*side*s[i,j]; 
 
// calculation of points with marginal 
height 
for (i=0;i<100;i++) 
  for (j=0;j<100;j++) 
    if (s[i,j]>=zmax) points++; 
 
// calculation of total pressure 
Pall=N*P; 
 

 

4.1. Hardware/software separation 
At the first step (hardware/software partitioning unit) the nested loops are detected 
and features concerning variables and computation intensiveness of tasks are ex-
tracted (e.g. information for the number of repetitions, the dimension of the loops, and 
the number of instructions contained in the loop body). The code is transformed to the 
following one, and the extracted information on nested loop characteristics is stored 
separately. The characteristics extracted for the example are shown in Table 1. 

 
Table 1. Loop features extracted for the pressure example 

 
ID Type Instructions Iterations Dimensions 
2 FOR 4 10000*N 3 
3 FOR 1 10000 2 
5 FOR 1 10000 2 
6 FOR 1 10000 2 
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//^ BLOCK:1 
average=0; 
volume=0; 
side=5; 
N=50; 
points=0; 
//^EBLOCK:1 
//^ BLOCK:2 
for (time=0;time<N;time++) 
  for (i=0;i<100;i++) 
    for (j=0;j<100;j++)   

{ 
 P=0.5*Pm[i-1,j]+0.5*Pm[i-2,j-2]; 

   if (s[i,j]<zmax) 
          { 
     s[i,j]+=k[i,j]*a[i,j]*P; 
     Pm[i,j]=(1-a[i,j]*P); 
    } else Pm[i,j]=P; 
     } 
//^EBLOCK:2 
 

//^BLOCK:3 
for (i=0;i<100;i++) 
  for (j=0;j
//^EBLOCK:3 

<100;j++) average+=s[i,j]; 

//^BLOCK:4 
average=average/1000; 
//^EBLOCK:4 
//^BLOCK:5 
for (i=0;i<100;i++) 
  for(j=0;j<100;j++)  
    volume=volume+side*side*s[i,j]; 
//^EBLOCK:5 
//^BLOCK:6 
for (i=0;i<100;i++) 
  for (j=0;j<100;j++) 
    if (s[i,
//^EBLOCK:6 

j]>=zmax) points++; 

//^BLOCK:7 
Pall=N*P; 
//^EBLOCK:7 
 

 

      At the same time the variables are translated in virtual memory references as illustrated in  
Table 2.  

 
Table 2.The virtual memory for the pressure example 

 

Variable Size 
(B) 

Ele-
ments 

Total 
size 
(B) 

Location 
in memory 

long [100,100] s 4 10000 40000 0 – 39999 
long [100,100] a 4 10000 40000 40000 – 79999 
long [100,100] k 4 10000 40000 80000 – 119999 

float [100,100] Pm 4 10000 40000 120000 – 159999 
long zmax 4 1 4 160000 – 160003 

float P 4 1 4 160004 – 160007 
char i,j 1 2 2 160008 – 160009 

float average 4 1 4 160010 – 160013 
float volume 4 1 4 160014 – 160017 

int side 2 1 2 160018 – 160019 
int N 2 1 2 160020 – 160021 

int time 2 1 2 160022 – 160023 
int points 2 1 2 160024 – 160025 
float Pall 4 1 4 160026 – 160029 

 
The use of virtual memory is essential for providing a common addressing mecha-
nism for all parts both in hardware and in software. The placement of variables in the 
virtual memory at this stage will assist later the interfacing analyzer in implementing 
the appropriate communication modules for read/write accesses. Moreover, the virtual 
memory allows an upper level examination of areas of memory that will be heavily 
accessed during execution and therefore make the perfect candidates for their place-
ment at the fast memory components of the platform. 



11th Panhellenic Conference in Informatics 
 

194 

The initial automatic separation and selection of nested loops can be changed by the 
user through a graphical interface. Suppose that the selection of the user has lead to 
the following code: 

 
//^TASK:1$ 
//DESCRIPTION:INITIALIZATION$ 
//MAPTO:SOFTWARE 
average=0; 
volume=0; 
side=5; 
N=50; 
points=0; 
//^ETASK:1 
for (time=0;time<N;time++) 
{ 
//^TASK:2$ 
//DESCRIPTION:SIMULATION LOOP$ 
//MAPTO:HARDWARE 
for (i=0;i<100;i++) 
  for (j=0;j<100;j++)   
  { 
    P=0.5*Pm[i-1,j]+0.5*Pm[i-2,j-2]; 
    if (s[i,j]<zmax)  
    { 
   s[i,j]+=k[i,j]*a[i,j]*P; 
   Pm[i,j]=(1-a[i,j]*P); 
    } else  Pm[i,j]=P; 
  } 
//^ ETASK:2 
} 
//^TASK:3$ 
//DESCRITPION:SURFACE CALCULATIONS$ 
//MAPTO:HARDWARE 
for (i=0;i<100;i++) 

for (j=0;j<100;j++) 
  
//^ETASK:3 

average+=s[i,j]; 

 
 

//^TASK:4$ 
//DESCRIPTION: AVERAGE CALC$ 
//MAPTO:SOFTWARE 
average=ave
//^ETASK:4 

rage/1000; 

//^TASK:5$ 
//DESCRIPTION:VOLUME CALCULATION$ 
//MAPTO:HARDWARE 
for (i=0;i<100;i++) 
  for (j=0;j<100;j++) 
   volume=volume+side*side*s[i,j]; 
//^ETASK:5 
//^TASK:6$ 
//DESCRIPTION: MAXHEIGHT CALCULATION$ 
//MAPTO:HARDWARE 
for (i=0;i<100;i++) 
  for (j=0;j<100;j++) 
    if (s[i
//^ETASK:6 

,j]>=zmax) points++; 

//^TASK:7$ 
//DESCRIPTION: TOTAL PRESSURE 
CALCULATION$ 
/MAPTO:SOFTWARE 
Pall=N*P; 
//^ETASK:7 
 

 

The graphical representation of the task partitioning to Hardware/Software is illus-
trated in Figure 2.  
 
 

 
 
 
 
 

1 2 3 4  5 6 7 

SOFTWARE
 

HARDWARE 
 

Figure 2. Graphical representation of the task graph partitioning to Hardware/Software  
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4.2 Platform Selection 

The iterative procedure for platform selection assists the user in deciding amongst the 
following alternative architectures, also shown in Figure 3. 
 

1. The microprocessor and the FPGA share the memory through a bus 
2. The FPGA serves as a coprocessor. Only the microprocessor has access to the mem-

ory. The communication between the microprocessor and the FPGA is achieved with 
a shared buffer. The microprocessor controls the FPGA through control signals, 
launches tasks and collects the results 

3. The microprocessor and the FPGA have private memory spaces and communicate to 
each other through a buffer 

4. Similar to the second option, but the FPGA can access the memory with direct mem-
ory access (DMA technology) 

 

  
Figure 3  Alternative available architectures for the suggested methodology 

 
The first selection reduces the implementation cost but increases the communication 
overhead. The second alternative is appropriate when the time required for the ex-
change of variables among CPU-FPGA is small, i.e. the amount of data which should 
be transferred from the microprocessor to the FPGA and vice versa is small. The third 
selection is appropriate for applications with tasks which do not have to communicate 
a lot with each other, and most of their variables are private to these tasks. The last se-
lection has increased implementation cost, high communication overhead but com-
bines the advantages of selections 1 and 2. A fifth solution which combines all the 
above characteristics is also possible, but the implementation cost is very high. 
 
The element “Profiling” forms a mapping of the variables of all tasks to the virtual 
memory. In Figure 4, the mapping for the pressure example is shown and in Table 3 
we illustrate the allocation of spaces according to the selected data mapping. 
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Hardware 
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0 – 39999 s 

40000 – 79999 a 
80000 – 119999 k 

120000 – 159999 Pm 
160000 – 160003 zmax 
160004 – 160007 P 
160008 – 160009 i,j 
160010 – 160013 average 
160014 – 160017 volume 
160018 – 160019 side 
160020 – 160021 N 
160022 – 160023 time 
160024 – 160025 points 
160026 – 160029 Pall 

 
Figure 4 Virtual memory and hardware/software mapping for the pressure example 

      
Table 3. Memory access from software and hardware units 

Access Memory space Memory size 
hardware 0 - 160003 160020 Bytes 
software 160010 - 160029 20 Bytes 
shared 160004 - 160025 10 Bytes 

 
At this stage of design, the separation into software and hardware has been done, the 
architecture of the platform has been selected and the variables have been assigned to 
their real locations.  

The element “Analysis of hardware/software interface” adds the necessary code for 
memory access. This code is selected from an available library of ready-to-use proto-
cols. The element “Automatic parallelization” transforms loops as described in detail 
in [Panagopoulos (2004)]. The general architecture is given in Figure 5. The control-
ler calculates the coordinates of the instances of the nested loop which execute in par-
allel (define a hyperplane). A distribution algorithm assigns these points to the buffers 
connecting the processing element with the coordinator. The processing elements col-
lect the tasks their buffers, perform the tasks and then collect another task from the 
buffer, until no more tasks are to be performed. In other words, the controller decides 
about which tasks can be performed in a specific time moment and the processing 
elements perform the tasks. It is a dynamic load balancing technique, similar to the 
farmer-worker programming paradigm.  

 
 

Figure 5 General Architecture of the Automatic Parallelization Unit 



Computer / Sensor Hardware and Architecture 197 

5.   Conclusions and Future Work 
AMPLE is a platform based design methodology for the design of embedded systems 
from high level programming languages. It comes equipped with a set of profiling 
tools, introduces the use of a virtual memory as a middle layer to assist memory map-
ping, it automatically synthesizes nested loops in HDL language and provides an ana-
lytical workspace for design space exploration. It manages to minimize design time 
while allowing exploitation of the most desirable performance-area tradeoff. In the 
future, we are planning to further expand the tool by allowing additional parallelizing 
methodologies to be used in the implementation of nested loops, to add further profil-
ing information concerning dynamic features of the algorithm and to provide micro-
processor specific optimization which will also affect the performance of the executed 
software. 
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