

Generalized Performance Model for Flexible
Approximate String Matching on a Distributed

System

Panagiotis D. Michailidis and Konstantinos G. Margaritis

Department of Applied Informatics, University of Macedonia
{panosm, kmarg}@uom.gr

Abstract

This paper proposes a generalized and practical parallel algorithm for flexible approximate
string matching which is executed for several kinds of clusters such as homogeneous cluster
and heterogeneous cluster. This parallel algorithm is based on the master - worker paradigm
and it implements different partitioning schemes such as static and dynamic load balancing
cooperating with different data allocation techniques such as the allocation of texts and
allocation of text pointers. Furthermore, the parallel algorithm is analyzed experimentally
using the Message Passing Interface (MPI) library for different strategies of load balancing
and data allocation onto two kinds of clusters. Further, we propose a general performance
model that can be used to predict the performance of the parallel flexible approximate string
matching algorithm for both types of clusters. The theoretical performance model has been
validated against experimental results and it is shown that the model is able to predict the
parallel performance accurately.

Keywords: approximate string matching, performance model, cluster of workstations, MPI

1. Introduction
Approximate string matching problem received much attention over the years due to
its importance in various applications such as information retrieval, computational
biology and intrusion detection. All those applications require highly efficient
algorithm to find all the occurrences of a given pattern in the text. It is defined as
follows: given a large text collection t = t1t2…tn of length n, a short pattern p =
p1p2…pm of length m and a maximal number of errors allowed k, we want to find all
text positions where the pattern matches the text up to k errors. Errors can be
substituting, deleting, or inserting a character. Recent surveys and experimental
results of well known sequential algorithms for simple approximate string matching
can be found in [Navarro (2001)].

The basic problem can be extended to include more complicated patterns, including
patterns with a “don’t care” symbol, patterns with a complement symbol and patterns

11th Panhellenic Conference in Informatics 280

with a class symbol. Some recent publications, which also provide surveys of
previous work, are [Navarro et al. (2000)]. Therein sequential algorithms are
proposed for the solution of several aspects of the flexible approximate string
matching problem.

A few attempts for implementing approximate string matching and other similar
problems have been made on a cluster of workstations. In [Michailidis et al. (2001)]
an exact string matching algorithm was parallelized and modeled on a homogeneous
platform giving positive experimental results. Further, in [Lavevier et al. (1997), Yap
et al. (1998)] presented parallelizations of a biological sequence analysis algorithm on
a homogenous cluster of workstations and on an Intel iPSC/860 parallel computer,
respectively. Further, we have been proposed four parallel implementations for
simple approximate string matching on a cluster of heterogeneous workstations
[Michailidis et al. (2003)]. These implementations are based on static and dynamic
master - worker paradigm. In the same paper we have been proposed a performance
prediction model of four implementations. Recently, in [Boukerche et al. (2005)]
three parallel strategies were developed to run a biological sequence alignment
algorithm such as the Smith-Waterman algorithm on a cluster of homogeneous
workstations. Previous research is based on parallelization of a simple dynamic
programming algorithm on a cluster of workstations.

This paper makes the following research contributions:
• A generalized parallel flexible approximate string matching algorithm to

execute different load balancing strategies which cooperate with other data
allocation policies on different kinds of high performance clusters (such as
homogeneous and heterogeneous) in an unified way.

• A practical performance prediction model for evaluation of the general
parallel algorithm.

• The proposed general parallel algorithm implements not only simple
approximate string matching but also it executes searching for complex
patterns. Most text searching applications require these types of patterns,
therefore algorithms that cannot support them have limited applicability.
Further, this parallel algorithm can be implementing any sequential flexible
approximate string matching algorithms quite easily [Navarro et al. (2000),
Myers (1999)].

2. A General Parallel Implementation and Performance Analysis

2.1 General parallel implementation
The general parallel implementation is based on a general master - worker
programming paradigm and it takes into account two criteria: the load balancing
strategy and the data allocation strategy. The load balancing strategy is divided into

Grid and Cluster Computing 281

two categories: static and dynamic. In static load balancing strategy, the entire text
collection is partitioned into a number of the subtext collections according to the
number of workstations allocated. The amount of the subtext collection depends on
the type of cluster computing environment. In dynamic load balancing strategy, the
text collection is partitioned into small chunks of text and these chunks are assigned
dynamically to idle workstations in order to keep all the workstations busy. The size
of each chunk is a successive characters. This block size is an important parameter
which can affect the overall performance. More specifically, this parameter is directly
related to the I/O and communication factors. This block size can be applied to both
types of clusters.

On the other hand, the data allocation strategy also is divided into two categories:
allocation of texts and allocation of text pointers. In allocation of texts, the subtexts
that are obtained by load balancing strategy are distributed to corresponding
workstations. In this case the entire text collection is required to be stored on the local
disk of the master workstation. In allocation of text pointer, some master workstation
of the cluster has a text pointer that shows the current position in the text collection
and the master distributes the text pointers instead of the subtexts to corresponding
workers in order to reduce the communication overhead. In this case the entire text
collection is required to be stored on the local disks of all workstations.

Our distributed approximate string matching algorithm is based on the following
assumptions: First, the number of workstations in the cluster is denoted by p and we
assume that p is power of 2. Further, the workstations have an identifier myid and are
numbered from 1 to p. Second, the length of text n is much longer than the length of
the pattern string m. Finally, the complete text collection is stored on the local disks
of all workstations irrelative of the data allocation policy is used. The proposed
general parallel implementation is shown below.
main()
{

1. Initialize message passing routines;
2. for(i = 1; i <= p; i++) bs[i] = (l[i] * n) * A + a * A';
3. if (process == master) then call master() else call worker();
4. Exit message operations;

}

master()
{

1. bcast(pattern);
2. bcast(k);
3. count = active = offset = 0;
4. for(i = 1; i <= p; i++) {
5. if (R == 1)
6. send(&offset,Pi,WORKTAG);
7. else {
8. read a text chunk of size bs[i] starting from the position offset of file;
9. send(text,Pi,WORKTAG);
10. }

11th Panhellenic Conference in Informatics 282

11. active++;
12. offset += bs[i] - m + 1;
13. }
14. do {
15. recv(&count);
16. active--;
17. sender = Pany;
18. if (offset < (n - (m + 1))) {
19. if (R == 1)
20. send(&offset,Psender,WORKTAG);
21. else {
22. read a text chunk of size bs[sender] starting from the pos. offset of file;
23. send(text,Psender,WORKTAG);
24. }
25. active++;
26. offset += bs[sender] - m + 1;
27. } else
28. send(0,Psender,DIETAG);
29. } while (active>0);

}

worker()
{

1. bcast(pattern);
2. bcast(k);
3. while(TRUE) {
4. if (R == 1) recv(&offset,Pmaster,sourcetag);
5. else recv(text,Pmaster,sourcetag);
6. if (sourcetag == DIETAG) break;
7. if (R == 1) read a text chunk of size bs[myid] starting from the pos. offset of file;
8. count = string_search(pattern,text,m,n,k);
9. send(&count,Pmaster);
 }

}

The parallel implementation consists of two stages: the preprocessing and the
processing stage. The preprocessing stage of the parallel algorithm corresponds to the
line 2 of the function main(), whereas the processing stage corresponds to the master
and worker procedures. The preprocessing stage consists of computing the amount of
the text collection that is assigned to each workstation. The size of the text collection
that is distributed to each workstation depends on the load balancing policy and the
type of cluster computing environment. Therefore, if we want to run the static load
balancing policy on heterogeneous cluster then the amount of text that is distributed
to each workstation is proportional to its processing capacity compared to the entire
network i.e. is equal to li * n characters where li is equal to Si / Sumj

p-1
=0 Sj and Sj is the

speed of the workstation j. If we substituting Sj = 1 in above equation li for
homogeneous cluster then the amount of text that is assigned to each workstation is
equal to the size of the text collection divided by the number of allocated
workstations. Finally, if we want to run the dynamic load balancing policies on both
types of clusters then the size of text that is assigned dynamically to workers will be
an optimal block size a which minimizes the communication overhead.

Grid and Cluster Computing 283

The processing stage consists of five phases. In first phase, the master broadcasts the
pattern string and the number of errors k to all workers which corresponds to the lines
1-2 of the master procedure. In second phase, the master sends the first text pointers
to corresponding workers or the master reads from the local disk the several chunks
of the text collection and sends these chunks to corresponding workers. The second
phase corresponds to the lines 4-13 of the master procedure. In third phase, the master
receives the number of occurrences from each worker and if there are still any chunks
of the text collection left, the master reads and distributes next chunks (or pointers) of
the text collection to workers. The master sends a terminator message when all the
chunks of text or pointers have been taken. This phase corresponds to the lines 14-29
of the master procedure. In fourth phase, when each worker receives a pointer then
reads from the local disk the bs[j] characters of text starting from the pointer that
receives and performs a sequential flexible approximate string matching procedure
between the corresponding chunk of text and the pattern. However, when each worker
receives a chunk of text then performs a sequential flexible approximate string
matching algorithm between the corresponding chunk of text and the pattern. This
fourth phase corresponds to the lines 4-8 of the worker procedure. In fifth phase, each
worker sends the result i.e. the number of occurrences back to master. This phase
corresponds to the line 9 of the worker procedure.

We introduced two Boolean parameters A and R in the proposed parallel
implementation which control different policies of load balancing and data allocation
for both types of clusters. More specifically, the parameter A controls the load
balancing strategy whereas the parameter R controls the data allocation policy. In
Table 1 we show the values of the parameters A and R which corresponds to different
parallel schemes and variations.

Table 1. Protocol of the parallel implementation

Parallel Schemes A R
Static allocation of texts (in short, P1) 1 0
Dynamic allocation of texts (in short, P2) 0 0
Dynamic allocation of pointers (in short, P3) 0 1
Static allocation of pointers (in short, P4) 1 1

2.2 General performance model
We give the execution time for each phase of the general parallel implementation.
Therefore, the execution time can be broken up into four terms:

• Ta: It is the execution time of the first phase and it is given by:

(1)
where Scomm is communication speed.

11th Panhellenic Conference in Informatics 284

• Tb: It is the execution time of the second and third phases. This time can be
broken up into three sub-terms Tb1, Tb2 and Tb3 and they are given by:

(2)

(3)

(4)

where Scomm is communication speed and (SI/O)master is the I/O capacity of the
master workstation. We note that the term Tb1 corresponds to the lines 4 - 13
of the master procedure and it is include the communication time to send the
first p pointers or chunks of text to workers. The term Tb2 corresponds to the
lines 8 and 22 of the master procedure and it is include the I/O time to read
the entire text collection. Finally, the term Tb3 corresponds to the lines 14-29
of the master procedure and it is include the other communication time to
send next chunks (or pointers) of text collection to workers.

• Tc: It is the execution time of the fourth phase. This time can be broken up
into two sub-terms Tc1 and Tc2 and they are given by:

where and is the I/O and searching
capacity of the heterogeneous network when p workstations are used,
respectively. The term Tc1 corresponds to the line 7 of the worker procedure
and it is average I/O time to read each worker from local disk the bs[j]
characters of the text in the case of allocation of text pointers. The term Tc2
corresponds to the line 8 of the worker procedure and it is average string
searching time. We include the first max term in the equations 5 and 6 which
define the worse case load imbalance at the end of the execution when there

Grid and Cluster Computing 285

are not enough chunks of the text collection left to keep all the workstations
busy. This term is used in the case of the dynamic load balancing policies.
Also, there is a second max term in equations 5 and 6 which define the
maximum time by all workstations of the heterogeneous cluster when static
load balancing policies are used. Finally, Θ(bs + m - 1, m, k) is complexity of
any approximate string searching algorithm between a chunk of text and a
pattern.

• Td: It is the execution time of the fifth phase and it is given by:

(7)

 where Scomm is the communication speed.

We must note that the values of the parameters A and R are given in Table 1 and the
parameters A´ and R´ are defined as the complement of A and R. Finally, the total
execution time of the general parallel implementation, Tp, using p workstations, is
given by:

(8)

In the general equation 8 we consider the maximum value between the
communication time and the computation time since in dynamic load balancing
policies, there is parallel communication and computation.

3. Experimental and Theoretical Results

The proposed parallel algorithm is implemented in C programming language using
the MPI library. In order to show the flexibility and the performance of the parallel
algorithm we used the values of Table 1 for implementing different parallel schemes.
Further, we incorporated the MYE flexible approximate string matching algorithm
[Myers (1999)] in each worker of the proposed parallel implementation for executing
string matching operation.

3.1 Experimental Results
The target platforms for our experimental study are two kinds clusters of workstations
connected with 100 Mb/s Fast Ethernet network. The homogeneous cluster consists of
9 Pentium workstations based on 100 MHz with 64 MB RAM. The heterogeneous
cluster consists of 4 Pentium MMX 166 MHz with 32 MB RAM and 5 Pentium 100
MHz with 64 MB RAM. A Pentium MMX is used as master workstation. The MPI
implementation used on the network is MPICH version 1.2. During all experiments,

11th Panhellenic Conference in Informatics 286

the cluster of workstations was dedicated. Finally, to get reliable performance results
10 executions occurred for each experiment and the reported values are the average
ones. The text collection we used was composed of documents, which were portion of
the various web pages. We also selected the simple and extended patterns randomly
from the same text collection.

Figure 1 presents the speedup curves of the parallel implementation with respect to
the number of workstations for different parallel schemes using the MYE algorithm
on both types of clusters. We note that all experiments for two dynamic schemes such
as P2 and P3, are performed using a block size of nearly 100,000 characters because
this block size is found to be optimal according to extensive study [Michailidis et al.
(2003)]. We observe from the experiments that all parallel schemes produce similar
speedups. However, the schemes with allocation of texts like P1 and P2 present a
communication overhead slightly compared to the schemes with allocation of pointers
such as P3 and P4.

Figure 1. Speedup of parallel flexible approximate string matching with respect to
the number of workstations for text size of 13MB and k = 3 using several pattern
lengths on a homogeneous cluster (left) and on a heterogeneous cluster (right)

3.2 Theoretical Results
In this subsection, we validate our proposed general performance model presented in
the previous section with results obtained by experiments. The performance estimated
results for different schemes of parallel implementation was obtained by the equation
8. In order to get these estimated results, we must to be determine the values of the
power weights and the values of the speeds SI/O, Sprep, Ssearch and Scomm of the fastest
workstation. The average computing power weights of the two types of workstations,
Pentium MMX and Pentium, are 1 and 0.567 respectively. These weights [Yan et al.
(1996)] were measured when the text size does not exceed the memory bound of any
machine in the system in order to keep the power weights constant. The average
speeds, SI/O, Sprep and Ssearch were measured for different text sizes as follows, SI/O =
31021855,26 chars/sec, Sprep = 4407511,178 chars/sec and Ssearch = 892402,9763

Grid and Cluster Computing 287

chars/sec. Finally, the communication speed was measured for different text sizes and
block sizes as follows, Scomm = 9378629,434 chars/sec.

Figure 2 presents the speedups obtained by the experiments and those by the equation
8 for different parallel schemes on both types of clusters. We can see that the
estimated results of the parallel implementation for different schemes confirm well
the computational behavior of the experimental results.

Figure 2. Experimental and theoretical speedup for four schemes P1, P2, P3 and P4
on a homogeneous cluster (left) and on a heterogeneous cluster (right)

4. Conclusions
The advantage of the proposed parallel implementation is that there is a single
algorithm to execute different load balancing and data allocation choices for both

11th Panhellenic Conference in Informatics 288

types of cluster in a unified and efficient way. Further, the proposed performance
model is general and it can be incorporated in a kernel of a application. This model in
a kernel can be predict the performance for some workstations of the cluster a priori
and it will run the suitable load balancing and data allocation strategy. Therefore, as a
general conclusion we can say that this parallel implementation and performance
model provide a flexible environment to execute the string matching in a huge text
base using different policies of load balancing and data allocation. When user submits
a request with the values of the parameters A and R, the cluster platform is adapted
easily in order to execute the string matching in a large text collection. Further, the
parallel implementation has adaptability since it is suitable for parallelizing other
sequential flexible approximate string matching algorithms and multipattern string
matching algorithms. Finally, the performance model can be adapted to other
important applications such as bioinformatics and scientific computing.

References
Boukerche, A., Melo, A. C. M. A., Ayala-Rincon, M., Santana, T.M. (2005), Parallel

strategies for local biological sequence alignment in a cluster of workstations, in
Proc. of the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS05).

Lavenier, D., Pacherie, J.L. (1997), Parallel processing for scanning genomic
databases, in Proc. PARCO'97, pp. 81-88.

Michailidis, P.D., Margaritis, K.G. (2003), Performance Evaluation of Load
Balancing Strategies for Approximate String Matching Application on an MPI
Cluster of Heterogeneous Workstations, Future Generation Computer Systems,
vol. 19, no. 7, pp. 1075 - 1104, Elsevier-Science.

Michailidis, P.D., Margaritis, K.G. (2001), String matching problem on a cluster of
personal computers: Performance modeling, in Proc. of the 15th International
Conference Systems for Automation of Engineering and Research, pp. 76-81.

Myers, G. (1999), A fast bit-vector algorithm for approximate string matching based
on dynamic programming, Journal of the ACM, vol. 46, no. 3, pp. 395-415.

Navarro, G. (2001), A guided tour to approximate string matching, ACM Computer
Surveys, vol. 33, no. 1, pp. 31-88.

Navarro, G., Raffinot, R. (2000), Fast and flexible string matching by combining bit-
parallelism and suffix automata, ACM Journal of Experimental Algorithmics, vol.
5, no. 4.

Yap, T.K., Frieder, O., Martino, R.L. (1998), Parallel computation in biological
sequence analysis, IEEE Transactions on Parallel and Distributed Systems, vol. 9,
no. 3, pp. 283-293.

Yan, Y., Zhang, X., Song, Y. (1996), An effective and practical performance
prediction model for parallel computing on non-dedicated heterogeneous NOW,
Journal of Parallel and Distributed Computing, vol. 38, no. 1, pp. 63-80.

