
Enabling a Network Simulation Application on Grid
Infrastructure

A. Menychtas1, D. Apostolopoulos1, D. Kyriazis1, K. Christodoulopoulos2, H.

Avramopoulos1 and T. Varvarigou1

1Department of Electrical and Computer Engineering, National Technical University

of Athens, 9, Heroon Polytechniou Str, 15773 Athens, Greece
2Computer Engineering and Informatics Dept. and Research Academic Computer

Technology Institute, University of Patras, Rio, Greece
E-mail: a_menychtas@telecom.ntua.gr, apostold@mail.ntua.gr,

dkyr@telecom.ntua.gr, kcristodou@ceid.upatras.gr, hav@mail.ntua.gr,
dora@telecom.ntua.gr

Abstract

The advent of heterogeneous and distributed environments, such as Grid environments, made
feasible the solution of computational intensive problems in a reliable and cost-effective way.
We demonstrate the operation of a mechanism and evaluate its performance and effectiveness
for the Network Simulation application in a Grid environment. The network simulator (ns-2),
that was implemented, is used for simulation of high speed optical networks. In order to be
able to meet the requirements of commercial business processes on the Grid, and especially
network simulation tasks, we present a toolkit for centralized job submission and access. The
approach has been implemented within the framework of the GRIA IST project that was
originally designed for industrial based applications.

Keywords: Grid Computing, Network Simulation, Optical Networks, Centralized Access,
Grid Portals

1. Introduction
Grid computing is increasingly being viewed as the next phase of distributed
computing. Built on pervasive Internet standards, Grid computing enables
organizations to share computing and information resources across department and
organizational boundaries in a secure, highly efficient manner. Grids support the
sharing, interconnection and use of diverse resources in dynamic computing systems
that can be sufficiently integrated to deliver computational power to applications that
need it in a transparent way [Foster I. (2001)], [Leinberger W. (1999)].

The Grid provides a cost-effective way for occasional users to access high-end
systems and software. At the same time, those that need such systems enough to

11th Panhellenic Conference in Informatics 290

invest in equipment and expertise can sell any spare capacity over the Grid to other
users. These benefits make the Grid a natural forum for e-commerce in computing
capabilities, and many observers believe these "B2B" applications will drive the
development of the Grid from a research tool to become the next generation Web
infrastructure. One of the Grid middleware that enables such actions is the outcome of
the GRIA IST project [GRIA Project], [Taylor Steve (2004)]. The performed work
allows the usage of this middleware by engineers in order to submit simulations to the
Network Simulator ns-2 platform [Network Simulator].

In this case, the Grid acts as an organization that connects and provides directly
available heterogeneous resources using Internet technologies, across widely variant
devices enabling the simulation process to be completed automatically in an
electronic way. It makes use of business models, processes and semantics to allow
resource owners and users to discover each other and negotiate terms for access to
high-value resources, by implementing an overall business process to find, procure
and utilize resources capable of carrying out high-value, expert-assisted
computations.

Enabling applications on the Grid is a challenging research topic as proved from the
results of the GRIA IST project, in which the GRIA middleware was implemented. In
brief, the overall procedure is being initiated from the engineer while the simulation
process occurs in one or more Grid resources. The above description proves that the
Network Simulator ns-2 meets the definition standards of a fully automated Grid
application as it eliminates the manual process - the engineer’s responsibilities are
limited to the uploading of the source files and the downloading of the final outcome.
Furthermore, the manual process is being replaced with an automated process of
allocating the Grid resources, completing the tender and the accounting procedures
and executing the submitted job. These procedures are described further on in our
paper.

Moreover, the main subject of our study concerns a toolkit especially designed and
implemented for any Grid application. The toolkit includes capabilities like
centralized access and usage statistics generation.

2. Toolkit Overview
The aforementioned toolkit provides a Grid application solution for the network
simulation scenario as well as added functionality like system control and user
management, that are being described in detail further on.

2.1. Toolkit Architecture
In general, the toolkit can be seen as an application inside a servlet container
(currently implemented using Apache Tomcat [Apache Tomcat]) combining four

Grid and Cluster Computing 291

modules. These modules are not purely separated but are distinguished based on their
role in the overall architecture of the system.

The first one is the Client (a series of java [Java Sun] classes) that implements the
API. This part is where the overall Grid layer is hidden. All actions like security
encryptions, allocation protocols and tender mechanisms have been implemented and
are compatible with the underlying layer of the supplier.

The second module, which is also a collection of java classes, implements a module
concerning user accounting and statistics. This module is used for the logging of all
user actions and storing the job submissions and allocations that each user has
performed.

The third and fourth modules are sets of JSP pages [JavaServer Pages] that provide
the user an administrative interface correspondingly. These pages are designed in
order to maximize the usability of the toolkit from the end-user side.

Regarding the network simulation software (NS), it is located on the supplier side
under the local resource broker. In order to proceed with the implementation of the
broker, we have adopted the OpenMosix toolkit [OpenMosix].

On the following Figure (Figure 1) we present the aforementioned modules along
with their role and the interactions they have with other parts of the system. The
administrator registers the suppliers while all users are able to request allocations and
submit jobs to them.

Toolkit

HTTPS

GRIA Client API

User
 Interface

Administrator
 Interface

Accounting / Statistics
Module

 Supplier #2

Supplier #1

User
Logging

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Action Statistics

Administrator

User

SOAP over
https

Middleware

Resource
 Parameters

LRB

NS

Middleware

Resource
 Parameters

LRB

NS

Figure 1. Toolkit Architecture

11th Panhellenic Conference in Informatics 292

2.2. Implementation
The scheme of this architecture is designed following the specifications under the
Web Services Resource Framework (WSRF) [OASIS Web Services Resource
Framework] and therefore it is a federation of Web Services managing stateful
resources. In general, the toolkit provides a package of four Web Services that
provide the capability to the service provider to access shared remote computation
and data storage, subject to a well-defined business process.

In detail and firstly, the Account Service supports the creation and management of
accounts. Secondly, the Resource Allocation Service allows remote users to request
and be granted (or denied) allocations of computation and data storage capacity at the
service provider site. The service incorporates a resource capacity model, which is
used to determine whether capacity is available to meet a requested allocation.
Moreover, the Data Storage Service allows remote users to upload and download data
files to the service provider. The Data Service also supports delegation of access
rights (for read or read-write access) to other users or service providers. Finally, the
Job Execution Service allows remote users to start, monitor or kill computational
jobs, executed by the service provider. The Job Service can be configured to support
multiple applications (mapped to different web service endpoints), fetching input
from and writing output to data storage services.

The above mentioned Services are designed to run on a Tomcat/AXIS [Apache Axis]
platform, using the WS-Security [OASIS Web Services Security] and Process-Based
Access Control (PBAC) features supplied by the GridServIT package, which is an
infrastructure toolkit enabling easy deployment of applications on to a Grid or similar
service-orientated architecture. It is based on Web Services technology (building on
Axis) and provides access to context information for a request at both detailed and
shortcut levels. GridServIT also adds a number of desirable security features such as
Secure Communication using WS-Security and X.509 PKI [Public-Key
Infrastructure], Authentication using the WS-Security SOAP header [SOAP Header
element] and Authorization using Process based access control.

A client-side toolkit and Java API is available and can be used to simplify the
programming of applications that use Grid Services. The Client API means that client
side applications can be easily written and managed.

2.3. Core Functionality
The main reason for implementing the toolkit is that a simple command line client
causes many problems when used by business end-users, usually not computer
professionals. At the same time, the toolkit provides homogeneous working
conditions to all individual users, which simplifies administration and problem
solving. Furthermore, all user actions can be monitored and supervised and thus avoid

Grid and Cluster Computing 293

unwanted usage and charges. Last but not least, the extraction of statistics about
system utilization is an extra feature that provides valuable information about the
enterprise needs and their employees actions. The basic capabilities of the
architectural components that were named above are being described more analytical
in the following paragraphs of this section.

In particular, one of the most interesting issues of any Grid middleware is the Job
Submission Procedure. The toolkit provides a specific interface in order to assure and
maximize the efficiency and usability of the Grid middleware. The Job Submission
Procedure steps are depicted in figure 2 and described in detail below.

Open Account

Upload Data

Download Data

Request Resources
(Tender)

Start Job

Check Job

Administrator

User

Figure 2. Job Submission Procedure

Tender is the first step of the Job Submission Procedure. The job requirements are
sent to the suppliers and the selection of the most suitable one for the specific job is
being completed. This process consists of two steps. Firstly, the e-client user fills in a
form with the requirement parameters of the job such as the start and end date of the
allocation and the size of the data. Based on these parameters, the toolkit interacts
with all the “known” suppliers (suppliers that the administrator has open accounts)
and returns their results (price for the specific job and other parameters similar to the
parameters mentioned before). Moreover, the toolkit includes a simple scheduler
[Jackson L. (2002)], which examines the results of the tender process and sets as
default the most appropriate. Thus the user can accept the suggestion or choose
another one. With the completion of the tender process, the user has an allocation (-
conversation) in a supplier and he is able to use the supplier resources.

Upload Data is an action that has to be performed after the tender process has been
completed and an allocation conversation has been opened. Using the toolkit, the user
uploads the input file(s) of the job and selects in which allocation the data will be
uploaded. The data in the suppliers is represented as a data conversation.

Setting the Job and defining the execution parameters is the next step in the Job
Submission Procedure. When all the data have been uploaded (input data may also be

11th Panhellenic Conference in Informatics 294

output data from previous job executions) and the allocation for the job execution has
been defined, the job execution can be started.

During the job submission procedure, the users can check the Job Status. Users can

ows the users to check the active conversations providing a list

2.4. Added Functionality
ncy and the reliability of the e-client, the toolkit also

 add new users, change their

trators to add new accounts in the

dministrators can check the status by browsing a list with the active

check the status of the job(s) sent for execution by browsing a table - available via the
toolkit - with all the active jobs (-conversations) and the status of them. After a
successful job execution (the status of the job would be finished / completed) the
users can download the output data of the submitted job or use them as input for a
new job submission.

Finally, the toolkit all
with all the conversations and their description. These conversations can be accounts,
allocations, data or job(s). Deletion of some conversations is also visible (for a
specific group of users) except if there is an allocation with active job or data.

In order to assure the efficie
includes an administration section. The administrators can perform several actions
divided into three major categories as described below.

In the User Management section, the administrators can
attributes or their access level, and view the details of the accounts. The user access
level gets specific values according to the users’ roles like Administrator, Read-Write
User, Read User or No Access. Moreover, the administrator can view a list of the
users, change user details or change the access level of a user. Users cannot be deleted
but they can only be restricted of any access (No Access level) in order to keep the
user instance for logging purposes in a database.

The System Control section allows the adminis
suppliers, check their status and balance and delete them. The new account process
contains information relative to the supplier. Each account is also described from a
status parameter. When a new account is opened, its status is pending-credit-checks.
The users can tender using this account only if the supplier approves it and the status
changes to open.

Furthermore, the a
accounts that the e-client uses, their description and their status. The administrators
can either close these accounts (the status changes to account-usage-finished and the
users cannot tender to them any more) or delete the accounts from the e-client system.

Finally, the administrators of the toolkit can check the balance of the accounts by
browsing a table with all the accounts, the events that charge them and the balance of
each one. Additional information for each account is provided containing all the
allocation conversations that the users opened and confirmed in the suppliers, or the
payments. Moreover in this page details about the events, like the date and the cost of

Grid and Cluster Computing 295

each one, are being provided.

The toolkit allows the presentation of Statistics for several time intervals, actions or

2.5. Local resource Broker
es the selected supplier a Local Resource Broker is

inux kernel [Linux Kernel] extension for single-system image (SSI)

to program applications specifically for OpenMosix. Since all

osix Community is very active, contributing add-on applications and

3. Network Simulation
is a discrete event based simulator targeted at

users. The statistics can be customized depending on the administrator’s preferences
(ex. per user, per action, for a specific time period or any combination of these). The
statistics section provides the administrator with monitoring information concerning
the user’s actions and how they interact using the toolkit. Also, using the statistics
information there can be determined which users submit jobs, which user accounts are
inactive and thus change the user rights.

When the submitted job reach
responsible for the distribution of the workload to all the available nodes of the
specific supplier. In this implementation the LRB that was used is the OpenMosix
cluster software.

OpenMosix is a L
clustering [Single-system image]. This kernel extension turns a network of ordinary
computers into a supercomputer for Linux applications. Once you have installed
OpenMosix, the nodes in the cluster start talking to one another and the cluster adapts
itself to the workload. Processes originating from any one node, if that node is too
busy compared to others, can migrate to any other node. OpenMosix continuously
attempts to optimize the resource allocation. OpenMosix achieves this with a kernel
patch for Linux, creating a reliable, fast and cost-efficient SSI clustering platform that
is linearly scalable and adaptive. With OpenMosix' Auto Discovery, a new node can
be added while the cluster is running and the cluster will automatically begin to use
the new resources.

There is no need
OpenMosix extensions are inside the kernel, every Linux application automatically
and transparently benefits from the distributed computing concept of OpenMosix. The
cluster behaves much as does a Symmetric Multi-Processor (SMP) [Single-system
image], but this solution scales to well over a thousand nodes which can themselves
be SMPs.

The OpenM
sharing helpful information with all users. The OpenMosix Add-Ons and Community
page lists these shared applications that is all licensed under GPL [GNU General
Public License].

The Network Simulator ns-2
networking research. It provides substantial support for simulation of TCP, routing,

11th Panhellenic Conference in Informatics 296

and multicast protocols over wired and wireless networks. Ns-2 is freely distributed,
open source software. Therefore, it gives the ability to reuse and extend existing
components and its rich infrastructure for accommodating new protocols and
architectures. The increase use of ns-2 by network researchers and its extensible
design influenced the choice of using ns as the base platform for our simulation.

The design of ns-2 is such that simulation of very large networks is difficult, if not

ion platform in the presented Grid

 perform is that they

impossible, due to excessive memory and CPU time requirements. The PADS
research group at Georgia Tech has developed extensions and enhancements to ns-2
(called PDNS - Parallel/Distributed ns) to allow a network simulation to be run in a
parallel and distributed fashion, on a network of workstations [PDNS]. By
distributing the network model on several machines, the memory requirements on any
single system can be substantially smaller than the memory used in a single-computer
simulation. The overall execution time of the simulation is at least as fast at the
original single-computer, and can be several times faster, while it can also support
proportionally larger network models by distributing the model on multiple systems.
In order to do so, PADS group has modified the ns event processing infrastructure,
and defined extensions to the TCL script syntax providing a way to describe
distributed simulation executions. However, extensions that were written for ns-2 are
not always compatible with PDNS and the additional complexity that the user has to
deal with (manually divide the workload on the cluster of computers) is not always
comparable to the gains of the parallel execution.

To evaluate the applicability of the ns-2 simulat
toolkit we have experimented with Optical Burst Switching (OBS) simulations
[OWns]. Optical Burst Switching is a concept which lies between grain optical circuit
switching and fine grain optical packet switching [Qiao C. (1999)]. Optical burst
switching improves the utilization of the wavelengths by aggregating the traffic at the
ingress of the network according to a particular parameter (commonly the destination
and secondary the class of service - CoS). From the aggregation of packets, a burst is
created and this is the granularity that is handled in OBS. The specific
implementation is an open source ns-2 extension that enables full network OBS
simulations with typical traffic sources such as CBR, exponential and Pareto over
TCP or UDP protocols and the extraction of various statistics.

The key characteristic of the experiments that we wanted to
require the execution of ns-2 many times with different but simple data inputs (in
particular, the network topology as well as various traffic parameters). What is
usually done in this kind of experiments is change one traffic parameter, execute the
simulation, obtain the results and iterate the whole process. The output is stored in a
file that we can later process in order to evaluate the effect of the examined parameter
on the performance. The iterative process that was just described can be considered as
a batch process: instances of the same program need to be run on one processor with
different inputs, while no communication is required between them.

Grid and Cluster Computing 297

From the aforementioned characteristics we can elicit that presented toolkit for

e portal

toolkit for automating the procedure of

ighly optimized when the

kit

centralized access and task submission to a cluster is an ideal solution for the
simulation experiments that we wanted to perform. The parallel ns (PDNS) addresses
a different kind of problem (experiments with large network models) which is
inappropriate for our case. The simulations that were actually conducted using the
toolkit proved the advantages of the proposed architecture when compared to “single-
pc” model. Since the submitted to the cluster tasks had the form of batch processes
that were CPU intensive, the execution time was vastly improved, converging to the
optimum parallel execution performance (s-pc-time/N, where N is the number of the
cluster’s Working Nodes and s-pc-time is the execution time on a single pc).

The job submission procedure for each simulation was simplified through th
functionality. The user didn’t have to deal with design and execution parameters (as
in the case of PDNS) which were handled effectively and transparently by the toolkit,
and was able to monitor the simulations and the output in real time. Finally, using the
framework the simulation resources can be accessed by more (than one) users, a
promising attribute for the efficient utilization of the available resources.

4. Conclusions and Future Work
In conclusion, in this paper we presented a
submitting network simulation jobs to a cluster that improves the Grid Middleware in
terms of time saving for operations allowing each user to be only a few clicks away
from each job submission and thus enabling centralized access to Network Simulation
Applications on the Grid. Furthermore, it provides a centralized management system
for all enterprise users, a rapid and easy to install application independent from the
number of local users as well as statistics and accounting.

Additionally, the efficiency of a Job scheduler can be h
criterion of execution time is estimated a priori which poses a research potential for
our group. Moreover, the toolkit can be enhanced with an efficient fault tolerant
mechanism [Litke Antonios (2005)] based on replication scheme in order to
maximize the reliability of e-business application usage over a Grid infrastructure.

Finally, our future plans on this field of interest include the migration of the tool
from the Apache Tomcat servlet container to the GridSphere [Novotny J. (2003)],
[GridSphere] portal framework in order to take advantage of the useful tools,
services, and core Grid portlets that provides, in addition to the pluggable access to
Grid services using the Portlet Services concept. Furthermore, it is open source
similar to the current infrastructure allowing the implementation of an abstract and
generic Grid Portlets model.

11th Panhellenic Conference in Informatics 298

5. References
Apache Axis implementation: http://ws.apache.org/axis
Apache Tomcat Servlet Container: http://tomcat.apache.org
Foster I., Kesselman C., Tuecke S. (2001), “The Anatomy of the Grid: Enabling

Scalable Virtual Organizations,” International Journal Supercomputer
Applications, Vol. 15, No. 3.

GNU General Public License: http://www.gnu.org/copyleft/gpl.html
GRIA Project: http://www.gria.org
GridSphere project: http://www.gridsphere.org
Jackson L. E. and Rouskas G. N. (2002), “Deterministic Preemptive Scheduling of

Real Time Tasks”, IEEE Computer, vol. 35, no. 5, pp. 72-79
Java Sun: http://java.sun.com
JavaServer Pages (JSP) technology: http://java.sun.com/products/jsp
Leinberger W., Kumar V. (1999), “Information Power Grid: The new frontier in

parallel computing,” IEEE Concur., Vol. 7, No. 4, pp. 75-84, October-December.
Linux Kernel: http://www.kernel.org
Litke Antonios, Tserpes Konstantinos, Dolkas Konstantinos, Varvarigou Theodora

(2005), “A Task Replication and Fair Resource Management Scheme for Fault
Tolerant Grids”, European Grid Conference

Network Simulator: http://www.isi.edu/nsnam/ns
Novotny J., Russell M., Wehrens O. (2003), “GridSphere: A Portal Framework For

Building Collaborations”. Proceedings of the 1st International Workshop on
Middleware for Grid Computing. Rio de Janeiro Brazil

OASIS Web Services Resource Framework (WSRF): http://www.oasis-
open.org/committees/wsrf

OASIS Web Services Security: http://www.oasis-open.org/committees/wss
OpenMosix cluster software: http://openmosix.sourceforge.net
OWns - Optical WDM Network Simulator: http://dawn.cs.umbc.edu/owns
PDNS - Parallel/Distributed NS: http://www.cc.gatech.edu/computing/compass/pdns
Public-Key Infrastructure (X.509): http://www.ietf.org/html.charters/pkix-

charter.html
Qiao C. and Yoo M. (1999), “Optical burst switching (obs)-a new paradigm for an

optical internet,” Journal High Speed Networks, vol. 8, pp. 69–84
Single-system image clustering: http://en.wikipedia.org/wiki/Single-system_image
SOAP Header element: www.w3schools.com/soap/soap_header.asp
Symmetric Multi-Processing: http://en.wikipedia.org/wiki/Symmetric_

multiprocessing
Taylor Steve, Surridge Mike, Marvin Darren (2004) “Grid Resources for Industrial

Applications”, ICWS'04

	1. Introduction
	2. Toolkit Overview
	2.1. Toolkit Architecture
	2.2. Implementation
	2.3. Core Functionality
	2.4. Added Functionality
	2.5. Local resource Broker
	3. Network Simulation
	4. Conclusions and Future Work
	5. References

