
GridTorrent: Optimizing data transfers in the Grid
with collaborative sharing

Antonis Zissimos, Katerina Doka, Antony Chazapis and Nectarios Koziris

National Technical University of Athens, School of Electrical and Computer
Engineering, Computing Systems Laboratory

{azisi, katerina, chazapis, nkoziris}@cslab.ece.ntua.gr

Abstract
As Grid systems expand and become more and more popular, there is a growing need for
efficient, scalable and robust data transfer mechanisms that can deal effectively with large file
transfers and flash crowd situations. In this paper, we address the problem of data transfer
optimization by presenting GridTorrent - a modified BitTorrent protocol, tightly coupled with
modern Grid middleware components. GridTorrent can be used to transfer files directly from
established GridFTP servers or other GridTorrent peers that are simultaneously requesting the
same information. The peer-to-peer approach enables the aggregate data transfer throughput to
escalate, even when numerous requests rely on a single data source, and achieve better
utilization of the available Grid resources. Experimental results, conducted using a prototype
implementation, suggest that there are significant advantages when using GridTorrent to
optimize data transfers. Moreover, GridTorrent is completely backwards-compatible with
already deployed Grids.

Keywords: Grid, Data Grid, data management, data transfer, replica location service, replica
optimization service, peer-to-peer networks, collaborative sharing

1. Introduction
In recent years, Grid systems have gained popularity and have been widely utilized
within the scientific community. The Grid is a wide-area, large-scale distributed
computing system, in which remotely located, disjoint and diverse processing and
data storage facilities are integrated under a common service-oriented software
architecture [Foster, Kesselman (1999)]. One of the Grid's most essential and critical
components is the data management layer. Modern Grid architectures employ several
services for this fundamental layer. A basic service is the Data Transfer service,
responsible for moving files among grid nodes (e.g. GridFTP). Also, the Replica
Location Service (RLS) keeps track of the physical locations of files. Moreover, an
optimization service selects the best data source for each transfer in terms of
completion time and manages the dynamic replica creation/deletion according to file
usage statistics.

11th Panhellenic Conference in Informatics 300

In this paper we introduce GridTorrent, which is focused in realtime optimization of
data transfers on the Grid. GridTorrent is an implementation of BitTorrent designed to
interface and exploit well-defined and deployed Data Grid components and protocols.
We argue that a protocol based on peer-to-peer techniques can provide the needed
effectiveness and scalability, even under extreme load and flash crowd conditions.
We ground our work on BitTorrent due to its sustained throughput compared to other
peer-to-peer data transfer protocols under the aforementioned scenarios.

GridTorrent can be integrated into existing middleware distributions offering data
transfer optimization without requiring extra services from the Grid infrastructure.
For instance, instead of .torrent metainfo files, GridTorrent uses the RLS provided by
existing Grid deployments. Also, the GridTorrent client is able to use GridFTP and its
partial file transfer feature to request file fragments from servers that already hold a
file. Therefore, a GridTorrent is possible to connect both to other GridTorrent clients
and GridFTP servers located in the Grid. GridTorrent use the inherent mechanism of
the BitTorrent protocol that selects the best download sources on the fly, based on
realtime bandwidth metrics, independent of the actual transfer mechanism. In
addition, GridTorrent deployments are backwards compatible, because additional data
stored in the Replica Location Service is ignored from regular clients of the Data
Management API and considered only from GridTorrent enabled clients.

The rest of the paper is organized as follows: Section 2 presents an overview of Data
Management Services in the Grid. The BitTorrent protocol is briefly described in
Section 3. Our prototype is presented in section 4 and evaluated through performance
results of its implementation in section 5. Finally we conclude the paper with
references to related work in the area and thoughts on future work in the same
direction.

2. Data management services in the Grid

2.1 Locating files

One of the core building blocks of the Data Grid architecture is the Replica Location
Service. The Grid environment may require that data is to be scattered globally due to
individual site storage limits, but also remain equally accessible from all participating
computing elements. In such cases, it is common to use local caching of data to
reduce the network latencies that would normally add up as a constant overhead of
remote data access operations. In Grid terminology, local copies of read-only remote
files on storage elements are called replicas [Stockinger et. Al. (2002)], while
applications running on the Grid request such local file instances through specialized
Grid data management services. To work with a file, a Grid application must first ask
the Replica Location Service to locate corresponding instances of the requested item
so that if a local replica already exists, the application can use normal file semantics

Grid and Cluster Computing 301

to access its contents. In the case only remote copies are found, another component of
the Data Grid can take on the responsibility of copying the remote data to the local
node and update the replica location indices with the position of the new instance.

The most widespread solution currently deployed on the Grid, namely the Giggle
Framework [Chervenak et Al. (2004)], constructs a uniform filename namespace of
unique per VO identifiers (logical filenames - LFNs) and manages the mappings of
these identifiers to physical locations of files (physical filenames - PFNs). LFNs are
used by the applications to locate data, no matter the source of the request or the
physical location of the information. PFNs, which are used by the Replica Location
Service and other Data Grid services, are structured similar to a URL, describing the
access protocol, the site and the path in the site directory structure for a given replica.
In order to distribute the replica location data throughout the Grid, Giggle makes use
of two main components, the local replica catalogs (LRCs) and the replica location
indices (RLIs):

• An LRC maintains information about logical filenames such as access lists,
creation date and various other file attributes. It also stores a map of all physical
filenames that are replicas of a logical filename (LFN to PFN maps). Given an
LFN, the LRC will return the associated PFN set.

• An RLI maintains information about the catalogs and the associated logical
filenames. It can find which catalog holds the replica file list for a given LFN
(LFN to LRC map).

• In a default deployment scenario, each participant of a VO manages an LRC,
while the overall orchestration of the RLS is done by a single central RLI per VO.
When requirements escalate, multiple RLIs can be deployed in parallel, providing
optional coarse-grain load-balancing and fail-over features to the replica location
infrastructure. The Giggle Framework instructs that multiple indices and catalogs
form a two-level hierarchy, with each LRC linked to multiple RLIs and vice
versa. Multiple RLIs can also form tree-like structures.

11th Panhellenic Conference in Informatics 302

Figure 1. Replica Location Service deployment scenario.

2.2 Transferring files

Another fundamental building block of the Data Grid architecture is the GridFTP
Protocol, a protocol defined by the Global Grid Forum, that addresses the issue of
data transfer among grid nodes. Modern Grid middleware distributions like the
Globus Toolkit [Foster et Al. (2001)] include the GridFTP service, as it has become
an integral part of the Grid infrastructure. It extends the standard FTP protocol by
introducing features like Grid Security Infrastructure (GSI) [Foster et. Al. (1998)] and
third-party control of data transfer. The later provides the ability to a user or an
application at one site to initiate, monitor and control a data transfer operation
between two other “parties”, the source and destination sites for the data transfer. This
is achieved through the separation of control and data channel. An additional
extension is the support of both manual setting and automatic negotiation of TCP
buffer sizes so as to optimize the transfer of large files and large sets of small files.

However, the techniques adopted by the Grid community over the past years in this
direction have evolved significantly. The most widespread solution currently
deployed on the Grid, is the Globus Striped GridFTP protocol [Allcock et. Al.
(2005)], included in the current release of the Globus Toolkit 4. The new features
added to GridFTP enable transfer of data striped or interleaved across multiple
servers, partial file transfer, meaning transfer file portions rather than the complete
file and parallel data transfer using multiple TCP streams in parallel, not only
between a single source and destination, but also between each of the multiple servers
participating in a striped transfer.

Even so, the GridFTP protocol is based on the client – server model, inflicting all the
undesirable characteristics of centralized techniques, such as server overload, the
existence of a single point of failure and the inability to cope with flash crowds.
However, the Replica Location Service can be exploited to optimize the data
movement services. Through replica-aware algorithms, data movement services can
take advantage of multiple replicas to boost aggregate transfer throughput. We argue
that the centralized approach used may reach its limits, when the number of potential
downloaders and the volume of data increase in several orders of magnitude.

3. Brief description of the BitTorrent protocol
BitTorrent [Cohen (2003)] is a peer-to-peer protocol that allows clients to download
files from multiple sources while uploading them to other users at the same time,
rather than obtaining them from a central server. Its goal is to reduce download time
for large, popular files and the load on servers that serve these files as well.

Every file is divided in chunks, typically of 256kB each. Clients can exploit this

Grid and Cluster Computing 303

fragmentation by simultaneously downloading chunks from many sources. For
integrity reasons imposed from this extended fragmentation, a hash is kept for every
group of chunks called a piece. This information, along with the file size, is stored in
a metainfo file, identified by the extension .torrent. At bootstrap, a client first reads
the metainfo file to obtain the fragmentation policy and the URL of the tracker. The
tracker service is responsible for holding information concerning the peers involved
in a file transaction. Upon connection to the corresponding tracker, the client receives
a random list of peers that are currently downloading or uploading the file. Peers are
categorized in seeds when they already have the whole file and leechers when they
are still downloading pieces. From that point on, the client is responsible to establish
connections to those peers and decide all the data movements based on local
information.

In order to improve availability and ensure uniform distribution of the pieces, a peer
selects the pieces to be downloaded based on a rarest-first policy. The effectiveness
of BitTorrent relies on its built-in incentive mechanism, the choking algorithm. It is
essentially a peer selection algorithm that poses a limit on the number of concurrent
uploads, typically set to 4, and gives priority to the peers with the best upload rates.
There is a rechoke period after which each peer recalculates the upload rates of its
neighbors and decides which peers to choke and which to unchoke. Thus, the protocol
avoids free-riders, meaning peers that download without contributing to the system.
Furthermore, an additional peer is randomly unchoked once every third rechoking
period by means of an optimistic unchoke. A BitTorrent deployment scenario is
depicted in Figure 2(a).

The latest version of the BitTorrent client replaces the tracker service with a
Distributed Hash Table (DHT) for dynamically locating the peers that participate in a
file transaction.

4. GridTorrent design

4.1 Extending the Replica Location Service

A main component in the BitTorrent protocol is the metainfo file, also known as the
.torrent file. This file contains important information about the data to be
downloaded. In our design, we eliminate the use of this file and incorporate all the
necessary information into the Grid Catalogs and more specifically in the Replica
Location Service. For each file we add the following attributes in the RLS catalog:

• the file size

• the size of each piece

• the hash of each piece (optional)

11th Panhellenic Conference in Informatics 304

The information stored in the Replica Location Service defines the number of replicas
for each file as well as the physical location of the actual data. The physical location
is identified by a unique physical file name (PFN) such as a GridFTP URL. To enable
the use of the GridTorrent protocol we introduce the GridTorrent URL, which has the
form:

btp://site.fully.qualified.domain.name:port/path/to/file

gtp://site.fully.qualified.domain.name/path/to/file

One advantage of the proposed modification is the use of already implemented
features to model our solution, preserving the backwards compatibility of the existing
Grid Architecture. The extra data stored in the Replica Location Service is by default
ignored by existing applications that cannot recognize it. If an application cannot
translate the GridTorrent URL, it will simply ignore the corresponding replica.
Therefore, the proposed changes in the current Grid Architecture not only enhance the
performance of data transfers, but furthermore seamlessly integrate with the current
state-of-the-art in Grid Data Management.

4.2 Extending the Data Transfer Service

GridTorrent is a Grid-enabled version of a BitTorrent client. It uses the existing Grid
protocols to provide an optimized data transfer service, as it has the ability to directly
communicate with GridFTP servers. The GridTorrent design comprises of the
following components:

• The RLSManager, which handles all the communication with the Replica
Location Service. This component is responsible for finding file information (file
size, piece size), registering replicas in the RLS and finding existing replicas.

• The PeerManager, which handles all the communication with other GridTorrent
or GridFTP enabled peers.

• The DiskManager, which handles all disk I/O for storing and retrieving files. If
file hashing is enabled, the DiskManager is also responsible for verifying the
correctness of the file by comparing the SHA1 of each downloaded piece against
the SHA1 provided by the RLS.

The main advantage of GridTorrent is the inherent optimization algorithm for replica
selection. A request to GridTorrent for a file, will trigger a query to the Replica
Location Service. This query can occur periodically to be notified of any changes in
the locations of file replicas or of any joins or departures of nodes, which can be
GridFTP servers as well as GridTorrent leechers or seeds. Upon receiving the list of
peers, GridTorrent acts according to the protocol prefix of the pfn. If it concerns a
GridTorrent client, the two involved peers initiate communication by exchanging the
bitTorrent bitfield message, informing each other of the pieces they possess.

Grid and Cluster Computing 305

Furthermore, each time a peer downloads a piece, it sends a have message notifying
all peers connected to it of its new acquisition. In order to download data from
another GridTorrent client, the peer issues a request message for blocks. Blocks are
parts of a piece, referenced by the piece index, a zero-based byte offset within the
piece and their length. Having information about the available pieces, GridTorrent
starts downloading pieces in a random order. In case of a GridFTP server, the peer
does not need to exchange bitfield messages. As for the downloading technique, the
client issues a GridFTP partial get message for the data within the specific block it
intends to download. The selection of the block is performed in the same way. A
GridTorrent deployment scenario is depicted in Figure 2(b).

 Figure 2. (a) BitTorrent deployment scenario (b) GridTorrent deployment scenario

One can exploit the information gained from the bitfield and have messages for
applying a specific download strategy. An example is downloading pieces in rarest
first order, as described earlier. One can also optimize the piece selection policy of
the client, preferring the peers with better download rates. Whilst the pieces are
downloading from the various peers, GridTorrent client maintains statistics about
their mean transfer time. Each time a block is downloaded by a peer the mean transfer
time of this node is calculated using the current download rate and the peer's history.

The GridTorrent protocol uses the BitTorrent tit-for-tat algorithm to ensure that all
peers contribute to the file downloading and to discourage free-riding. Each peer has
to upload to a constant number of N peers each time, utilizing the aforementioned
optimistic unchoking mechanism.

5. Implementation and experimental results

Our GridTorrent prototype implementation is entirely written in Java. The

11th Panhellenic Conference in Informatics 306

GridTorrent client has bindings with Globus Toolkit 4 libraries and exploits the
GridFTP client API and the Replica Location Service API. For our experiments we
use the PlanetLab infrastructure. Our testbed consists of 18 PlanetLab nodes,
completely heterogeneous. One of them is dedicated to the RLS service, another is
used as a GridFTP Server and the remaining nodes are file transfer clients.

Figure 3. Minimum, maximum and average time required for 16 independent

downloaders to transfer a file using either GridFTP or GridTorrent.

Figure 3 summarizes experiment results of our prototype, presenting the minimum,
maximum and average completion time in seconds. We compare the performance of
GridTorrent versus GridFTP when distributing a file to a constant set of nodes.
Having a GridFTP server running on a node, we invoke concurrent file transfers from
the GridFTP server to 16 client nodes of our testbed, first using GridFTP and then
using GridTorrent, and measure the total completion time. This experiment is
conducted for file sizes varying from 16 MB to 512 MB.

The first conclusion derived from concentrating on the mean completion time curves,
is that GridFTP performs better for small file sizes, while GridTorrent results in faster
transfers of larger files. As observed, there is a crossover point at 32 MB beyond
which GridTorrent clearly outperforms GridFTP. This is due to the overhead
introduced by the inherent BitTorrent protocol and its fragmenting mechanism - a
client must contact the RLS, obtain information about the file and receive the list of
peers involved in the file transfer before contacting them. Moreover, the messages
exchanged among GridTorrent clients, apart from the messages actually containing
file chunks, constitute an overhead, which in the case of small file sizes cannot be

Grid and Cluster Computing 307

compensated by the parallelism offered by the protocol.

Examining the figure more carefully, we conclude that GridTorrent's maximum and
average completion time is in general better than that of GridFTP, whereas its
minimum completion time is considerably higher. This can be justified by the fact
that the GridFTP server and one of the participating clients are located in the same
LAN. Since GridTorrent's protocol concentrates on fairness among nodes, it cannot
take as much advantage of LAN speeds as GridFTP does. In general, in cases where
bandwidth is not an issue, GridFTP can perform faster in contrast to cases where
bandwidth is the bottleneck and GridTorrent's parallelism can boost performance.

6. Related work

The efficient movement of distributed volumes of data is a subject of constant
research in the area of distributed systems. Having already analyzed the current data
transfer practices in Grid environments, in this section we focus on other proposed
data movement techniques, centralized or in the context of the peer-to-peer paradigm.

The Kangaroo architecture [Thain et. Al. (2001)] is a data transfer system that aims at
better overall performance by making opportunistic use of a chain of servers. The
disks are used as buffers, hiding network latencies. Thus it can be used in
environments where high throughput is needed but consistency is not of major
concern.

Weigle and Chien [Weigle, Chien (2005)] conceptualize the N-to-M communication
problem (M readers, N writers) by proposing the Composite Endpoint Protocol (CEP)
as a solution for bulk transfers. Users provide high-level transfer data to CEP and a
scheduler generates a schedule which optimizes the transfer performance by
producing a balanced weighting of a directed graph using various algorithms.
Afterwards, readers and writers implement the provided schedule. Nevertheless, the
model remains centralized.

Slurpie [Sherwood et. Al. (2004)] follows a similar approach to BitTorrent, as it
targets bulk data transfer and makes analogous assumptions. Nonetheless, it does not
support connection chocking, a feature of BitTorrent which encourages cooperation.

Several papers and technical reports analyzing BitTorrent's performance have been
published. Some of them present the conclusions derived from BitTorrent tracker and
client logs ([Izal et. Al. (2004)], [Pouwelse et. Al. (2004)]). Related work aims to
estimate the global efficiency of BitTorrent, the client interactions and the scalability
of the system under flash-crowd conditions [Izal et. Al. (2004)] and present a detailed
measurement study of the behaviour of BitTorrent in terms of popularity, availability,

11th Panhellenic Conference in Informatics 308

download performance, content lifetime and pollution level [Pouwelse et. Al. (2004)].
In [Qiu, Srikant (2004)], the authors attempt to theoretically trace the file-sharing
system's behaviour by introducing a simple fluid model and by obtaining expressions
for the average number of seeds, the average number of downloaders and the average
download time as functions of various system parameters. Moreover BitTorrent's
built-in incentive mechanism is evaluated. A simulator approach to understand
BitTorrent performance is presented in [Bharambe et. Al. (2005)]. The authors
examine the potential unfairness of the protocol under certain circumstances. The
evaluation shows that BitTorrent can treat unfairly high bandwidth peers. To solve
this problem the authors suggest a block-level rather than a rate-level tit-for-tat
policy.

[Wei et. Al (2005)] compares BitTorrent to FTP for data delivery in Grid
environments. Their experiments conducted in a LAN cluster involving 20 and 64
nodes, demonstrate that BitTorrent is efficient for large file transfers and scalable
when the number of nodes increases. Nevertheless, in contrast to [Wei et. Al (2005)]
we focus on Data Grid environments with specific concern for flash-crowd situations,
rather than Computational Desktop Grids. Moreover, we propose an architecture
which can be directly deployed in a real-life Grid environment.

7. Conclusion
We believe that in future Data Grid deployments client-server data transfer
mechanisms will be put aside in favour of peer-to-peer techniques, which provide
better network traffic distribution and resolve the single point of failure problem. In
this paper we described such a peer-to-peer data transfer algorithm, namely
GridTorrent, based on the popular BitTorrent protocol. GridTorrent is compatible
with the current Data Grid architecture and can be utilized without any changes in
already deployed Grid middleware.

Experiments, conducted in the PlanetLab infrastructure, show that GridTorrent
outperforms GridFTP in cases of large data transfers or limited bandwidth between
nodes. On the contrary, GridFTP performs better when there are no bandwidth
constraints. However, even in such cases, using GridTorrent to transfer data enables
remote peers to exploit the collaborative sharing properties of the underlying
BitTorrent protocol, in order to boost aggregate performance.

In future work, we plan to further evaluate our implementation using a larger set of
possible data transfer scenarios and different protocol parameters.

References
Allcock, W., Bresnahan, J., Kettimithu, R., Link, M., Dumitresku, C., Raicu, I.,

Foster, I. (2005), The Globus Striped GridFTP Framework and Server, in Proc. of

Grid and Cluster Computing 309

the ACM/IEEE Conference on Supercomputing, SC'05.
Bharambe, A., Herley, C., Padmanabhan, V. (2005), Analyzing and Improving

BitTorrent Performance, Technical Report, Carnegie Mellon Institute and
Microsoft Research.

Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A.,
Kesselman, C., Kunszt, P., Ripeanu, M., Schwartzkopf, B., Stockinger, H.,
Stockinger, K., Tierney, B. (2002), Giggle: a framework for constructing scalable
replica location services, In Proc. of the 2002 ACM/IEEE conference on
Supercomputing, Baltimore, Maryland.

Cohen, B. (2003), Incentives Build Robustness in BitTorrent, Workshop on
Economics of Peer-to-Peer Systems, Berkeley, CA, USA.

Foster, I., Kesselman, C., Tuecke, S. (2001), The Anatomy of the Grid: Enabling
Scalable Virtual Organizations International Journal of Supercomputer
Applications, vol. 15.

Foster, I., Kesselman, C., Tsudik, G., Tuecke, S. (1999), A security architecture for
computational grids, of the 5th ACM conference on Computer and
communications security, San Francisco, California, United States.

Izal, M. ,Uroy-Keller,G., Biersack, E. W., Felber, P. A., Al Hamra, A., Garces-Erice ,
L. (2004), Dissecting BitTorrent: Five Months In Torrent's Lifetime, in Proc. of
the 5th Passive and Active Measurement Workshop.

Pouwelse, J. A., Garbacki, P., Epema, D., Sips, H. J. (2004), A Measurement Study of
the BitTorrent Peer-to-Peer File Sharing System, Technical Report, Delft
University of Technology..

Qiu, D., Srikant, R. (2004), Modeling and Performance Analysis of BitTorrent-Like
Peer-to-Peer Networks, in Proc. of SIGCOMM Comput. Comun., vol. 34, pp.
367-378.

Sherwood, R., Braud, R., Bhattacharjee, B. (2004), Slurpie: A Cooperative Bulk Data
Transfer Protocol, in Proc. IEEE INFOCOM.

Stockinger, H., Samar, A., Holtman, K., Allcock, B., Foster, I., Tierney, T. (2002),
File and Object Replication in Data Grids, Cluster Computing, Kluwer Academic
Publishers, vol. 5, pp. 305-314.

Thain, D., Basney, J., Son, S. C., Livny, M. (2001), The Kangaroo Approach to Data
Movement on the Grid, in Proc. of the Tenth IEEE Symposium on High
Performance Distributed Computing (HPDC10).

Wei, B., Fedak, G., Cappello, F. (2005), Collaborative Data Distribution with
BitTorrent for Computational Desktop Grids, in Proc. of the 4th International
Symposium on Parallel and Distributed Computing, ISPDC'05.

Weigle, E., Chien, A. (2005), The Composite Endpoint Protocol (CEP): Scalable
Endpoints for Terabit Flows, in Proc. of the IEEE International Symposium on
Cluster Computing and the Grid, CCGrid'05.

