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Abstract 

Process network is a computation model in which many concurrent processes communicate 
through unbounded FIFO buffer and can be executed simultaneously. In real time digital 
signal processing applications execution time is infinite. However, failures of implementation 
hardware can occur. In our work, dynamic run-time reconfiguration is introduced into process 
network which ensures error handling, avoiding deadlocks, continuous and on-time result 
delivery. After dynamic reconfiguration, network execution results may become non 
deterministic, but this helps avoiding critical termination of network execution. In this paper, 
we present a description of possible failures of network execution and discuss the means for 
avoiding these failures. 
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1. Introduction 
Process Networks (PN) is often used in digital signal processing (DSP) and control 
applications. In these systems various methods for analysis, design, and 
implementation of the problem are applied. For effective implementation of the 
problem in PN, this problem must be decomposed into smaller parallel tasks. Each 
task is implemented in separate network node, which is also called actor. In process 
network concurrent processes representing the nodes communicate through 
unidirectional first-in, first-out (FIFO) channels [Lee et al. (1995)]. 
A well-designed system should always have a powerful mechanism for handling faults 
and changes of environment [Avizienis et al. (2004)]. In the design stage of system 
development it is difficult to predict all possible changes in system environment or in 
the system itself. These changes can even cause faulty execution or complete 
termination of execution of the system. The faults in system execution can be caused 
by software or hardware. In order to avoid such situations well-chosen design and 
implementation methods must be used which enable proper reactions to the changes 
and faults. Possible faults of elements of the system which can cause termination of 
system execution must be carefully considered in various critical systems. Such 
systems must also properly respond to changes of internal states or environment. In 
response to these changes, the system must reconfigure itself. Therefore, 
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reconfiguration can be used in ensuring fault tolerance of the system. 

2. Related Work 
Today a large variety of process networks used in DSP applications exists. These 
process networks can be grouped into two groups: non-configurable (Kahn Process 
Network (KPN), Synchronous Dataflow (SDF), Cyclo-Static Dataflow (CSDF)) and 
configurable process networks (Parameterized Synchronous Dataflow (PSDF), 
Reactive Process Networks (RPN), Configurable Hierarchical Dataflow (CHDF)). 
KPN is a subset of more general Process Network (PN) model and is used as bases 
for Fault Tolerant Process Network (FTPN) presented in this work. KPN consists of 
concurrent processes communicating over first-in first out unidirectional queues 
[Kahn (1974)]. KPN is useful for modelling and exploiting functional parallelism in 
streaming data applications. KPN uses completely dynamic execution of nodes and 
there is no need for describing schedule during system design, because scheduling 
does not affect the functional behaviour of the nodes. These features are very useful 
in dynamic network reconfiguration [Hofstee et al. (2002)]. In KPN, nodes are 
executed asynchronously, but the result of network execution is deterministic. 
Synchronous Dataflow network is applicable to simple dataflow systems without 
complicated flow of control. In SDF, a node produces and consumes a fixed number of 
data tokens on each of its outgoing and incoming channels during each activation [Lee 
et al. (1987)]. In Cyclo-Static Dataflow network [Bilsen, et al. (1996)] the algorithms 
are implemented which ensure cyclic execution of the network nodes. 
In order to capture the interaction between input events and execution units as well as 
reconfiguration in dynamic stream processing, reactive process networks are 
introduced [Geilen et al. (2004)]. The foundation for RPN was laid by efforts to 
integrate dataflow model and its reactive behaviour. Another means for specifying 
dynamic network reconfiguration during run-time is parameterizable SDF model 
[Bhattacharya et al. (2001)]. In PSDF, node execution is characterized by iterations 
that fire subprocesses in a particular order. Node execution can be reconfigured 
between iterations at run-time [Haim et al. (2006)]. Yet another approach for dynamic 
process network reconfiguration is Configurable Hierarchical Dataflow [Neuendorffer 
et al. (2004)]. It is concentrated on reconfiguration as a particular kind of event 
handling. The states of the network, when reconfigurations are allowed, are named 
quiescent states. CHDF focuses primarily on reconfiguration of SDF networks.  
Our work differs from the above discussed approaches because it presents another 
point of view to the purpose of process network dynamic reconfiguration. This point 
of view is based on the idea that critical moments [Olson et al. (2005)] in network 
execution must be specified in order to avoid critical termination. These critical 
moments appear when communication between network nodes is broken or node 
fails. Fault tolerant process network proposed in this work can be reconfigured 
dynamically in order to capture and process critical moments of network execution 
[Čeponis et al. (2002)].The proposed FTPN enables further execution of the network 
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after faults of its elements using remaining operational resources. FTPN fits for both 
data processing and various types of control applications [Čeponis et al. (2006)]. 

3. A Model of Fault Tolerant Process Network 
In our research the Fault Tolerant Process Network is developed. This process 
network is dynamically reconfigurable and the main purpose of dynamic network 
reconfiguration is reaction to failures in process network and handling of these 
failures. Moreover, dynamic reconfiguration can be used to ensure more effective 
consumption of available computational and memory resources. 
First, some common definitions and notations for process network are described. For 
FIFO channel specification there is universal finite set of channels CH and for every 
channel ch∈CH there is a corresponding finite channel alphabet Σ. Each channel 
ch∈CH is described by its length L and pointer ch(p) which refers to the last data 
record in the channel. The actions for data transfer through the channel are 
ch a,ch a|ch∈CH,a∈Σ. The action ch a denotes input of data into channel. The 
action ch a denotes output of data from channel. These actions form the set of 
actions for data transfer Ac={ch ,ch a|ch∈CH,a∈Σ}. 
For network nodes specification, a universal finite set of nodes N is used and for 
every node of this set n∈N there is a corresponding set of atomic actions Act. All 
actions of all network nodes are defined by the set A and the actions of every node 
Act⊆A. Every node has a set of input and output channels (chin,chout)∈CH. The 
duration of execution of each action is also specified.  

3.1. The Specification of Nodes in Fault Tolerant Process Network 
In functional specification of FTPN, the operation of each node must be defined as a 
sequence of atomic actions. Such specification is necessary for implementation of 
dynamic reconfiguration and change of network parameters when operations must be 
allocated from one node to another. The set of operations for each node Actn is 
specified as a sequence of atomic actions (Act1, Act2, ... ,Actk-1, Actk), where k is the 
number of atomic actions in the node. 
The nodes in FTPN can perform operations Cntrln which are used for network 
reconfiguration and changing network parameters. In order to define functional 
specification of the node in FTPN, the states of its execution must be determined. 
During communication operations the node performs input or output of data. After 
successful data input the node performs computation operations. When computations 
are over, the node writes output data to output channels chout. Control operations are 
executed in case of dynamic network reconfiguration or changing network 
parameters. Execution of control operations can be planned (if reallocation of 
network resources is required) or unplanned (in case of failure of network element). 
The node can be in one of the states { }cexbwwbrr nsnsnsnsnsnsnsNs ,,,,,,⊥= . Initial 
node state ns⊥ denote the starting point of node execution. In this state, initial working 
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parameters and values of variables are set for the node. Afterwards, the node moves 
to reading state nsr and tries to read data from input channels chin∈CH. If at least one 
ch(p)=null | ch∈chin, the node transits to state nsbr and waits until data are available in 
the channel. When the node has successfully read data from input channels, it moves 
to state nsex and executes actions Act⊆A. After finishing execution, the node transits 
to writing state nsw and writes results to its output channels chout∈CH. If at least one 
ch(p)≠ null | ch∈chout, p=L, the node moves to blocked writing state nsbw and waits 
for available free space in the output channel. When the node has finished writing 
data to channels, it moves to state nsr. 
The change of network execution parameters may be required in two cases: a node is 
in blocked reading or blocked writing states (nsbr or nsbw) and timeout occurs; or 
external request is received. In any of these two cases the node moves to control state 
nsc and changes required parameters. Afterwards, the node transits to reading or 
writing state (nsr or nsw) and continues execution. 
In FTPN all nodes are divided into two groups: internal nodes (having both input and 
output channels) and interface nodes (having only input or only output channels). 
The FSP specification of the node which has both input and output channels is 
presented below: 

Node = Initial, 
Initial = (set_parameters -> Reading), 
Reading = (reading_ok -> Execution | channel_empty -> BlockedReading), 
Execution = (execution_ok -> Writing), 
Writing = (writing_ok -> Reading | channel_full -> BlockedWriting), 
BlockedReading = (channel_not_empty -> Reading | reading_timeout -> Control), 
BlockedWriting = (channel_not_full -> Writing | writing_timeout -> Control), 
Control = (reading_continue -> Reading | writing_continue -> Writing). 

The FSP specification can be mapped to LTS [Huth (2005)] graph using the tool 
LTSA 2.2 [Magee et al. (2006)]. The LTS graph for the specified internal node is 
presented in Fig. 1. 
In process networks interface nodes are those who have only input channels (chout=∅) 
or only output channels (chin=∅). The states of interface nodes differ from the states 
of internal nodes and are also specified in this work. Interface nodes having only 
input channels do not perform writing to the channel; therefore such nodes do not 
have reading and blocked reading states (nbr and nbbr). These nodes usually represent 
outputs of the system under implementation and are directly connected to external 
objects. Therefore, failure of the interface node having only input channels can 
terminate execution of the whole process network. The interface node with only input 
channels has five possible states. 
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Figure 1. The States of Internal Nodes in FTPN 

The other type of network interface nodes has only output channels chout∈CH. Such 
nodes do not perform operations of reading from communication channels and thus 
have less possible states than internal nodes. Interface nodes having only output 
channels cannot transit to writing and blocked writing states (nbw and nbbw).  

3.2. The Specification of Channels in Fault Tolerant Process Network 
The set Sc={sc⊥,scw,sccf,scce,scpop,scpush,scinc,scdec} defines all possible states of the 
channel. After setting initial parameters in state sc⊥, channel transits to waiting state 
scw. In this state channel waits for requests from the nodes. When request from 
writing node arrives, channel moves to state sccf, in which it checks the availability of 
free space in channel memory. If there is a free space in memory, channel moves to 
the state scpush. During this state the incoming token is written to the channel. When 
request from reading node arrives, channel moves to state scce, in which it checks the 
availability of data in channel. If there are at least one data token, channel moves to 
the state scpop and sends first data token to reading node. When the token from the 
writing node arrives and channel is full, channel transits to the state scinc in which the 
length of the channel is increased. When channel length increasing is successful it 
moves to state scpush, otherwise it moves to state scw. The channel can transit to state 
scdec when a request from reading node arrives and other channels require to be 
increased. In state scdec, the length of the channel is decreased thus freeing memory 
for other channels. The FSP specification of channels in FTPN is presented below:  

Channel = Initial, 
Initial = (set_par -> Waiting), 
Waiting = (read -> CheckFull | write -> CheckEmpty), 
CheckFull = (full -> Waiting | not_full -> Push | inc -> Increase), 
Push = (push_ok -> Waiting), 
Increase = (inc_ok -> Push | inc_not_ok -> Waiting), 
CheckEmpty = (empty -> Waiting | not_empty -> Pop | dec -> Decrease), 
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Decrease = (dec_ok -> Pop ), 
Pop = ( pop_ok -> Waiting). 

This FSP specification is mapped to LTS graph which is presented in Fig. 2. 

 
Figure 2. The States of Channels in FTPN 

4. Algorithms for Handling Faults in Fault Tolerant Process 
Network 
The algorithms for handling faults of elements in process network must be specified 
to ensure that network continues execution after failure. As the main elements of the 
process network are nodes and channels, the algorithms are specified for the cases of 
network node failure and for network channel failure. Network nodes are grouped 
into internal nodes (having input and output channels), interface nodes having only 
input channels, and interface nodes having only output channels; therefore the fault 
handling algorithms for each of these types are specified.  
In case of internal network node failure we need to redistribute its actions to other 
node. We also need to redistribute the input and output channels of the faulty node. In 
order to minimize data loss, the reconfiguration must follow these rules: 

• All nodes connected with faulty node n perform their actions until: 
o input channels of the faulty node become full; 
o output channels of the faulty node become empty. 

• The nodes connected with faulty node n transit to blocked reading or blocked 
writing states. 

• After timeout the nodes connected with faulty node n transit to control state. 
In this state: 

o actions of the faulty node n are transferred to node n1 which first 
transits to control state and is connected to output channel of n; 

o the channel between n and n1 is destroyed; 
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o output channels of n are connected to n1; 
o input channels of n are connected to n1; 
o the data lost during failure is compensated. 

• The nodes which are in control state move to writing or reading states and 
reconfigured network continues execution. 

These rules are applicable to network nodes which have input and output channels 
(chin, chout)⊆CH. There are two exceptions when these rules cannot be applied: 
interface nodes having only output channels and interface nodes having only input 
channels. 

If the faulty node does not have input channels (chin = ∅), reconfiguration should 
follow these rules: 

• All nodes connected with faulty node n perform their actions until output 
channels of the faulty node become empty. 

• The nodes connected with faulty node n transit to blocked reading states.  
• After timeout the nodes connected with faulty node n transit to control state. 

In this state: 
o actions of the faulty node n are transferred to node n1 which first 

transits to control state and is connected to output channel of n; 
o the channel between n and n1 is destroyed;  
o output channels of n are connected to n1; 
o the data lost during failure is compensated. 

• The nodes which are in control state move to writing or reading states and 
reconfigured network continues execution. 

If the faulty node does not have output channels (chout = ∅), reconfiguration should 
follow these rules: 

• All nodes connected with faulty node n perform their actions until input 
channels of the faulty node become full. 

• The nodes connected with faulty node n transit to blocked writing states. 
• After timeout the nodes connected with faulty node n transit to control state. 

In this state: 
o actions of the faulty node n are transferred to node n1 which first 

transits to control state and is connected to input channel of n; 
o input channels of n are connected to n1; 
o the data lost during failure is compensated. 

• The nodes which are in control state move to writing or reading states and 
reconfigured network continues execution. 

In distributed process network, channel failure is also critical for network execution 
and can cause a global deadlock. In case of network channel failure, the change of 
network parameters must follow these rules: 
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• The nodes connected by faulty channel transit to blocked reading and writing 
states nsbr and nsbw. 

• After timeout the nodes connected by faulty channel transit to control state 
nsc. 

• Creation of a new channel is initiated by the node which first transits to 
control state. 

• The new communication channel is connected to the reading node as its input 
channel.  

• The new communication channel is connected to the writing node as its 
output channel.  

• The data lost during failure are compensated. 
• The nodes which are in control state move to writing or reading states and 

reconfigured network continues execution. 

5. Implementing FTPN 
In order to analyze the behaviour of process network in case of hardware failure, 
multi-threaded implementation of FTPN was used. The FIR filter process network 
was implemented in C# programming language using multiple threads. Separate 
thread was used for each element of the process network and main program was used 
for coordination. The failures of network elements were imitated by destroying a 
thread of node or channel. Multi-threaded implementation of the FTPN was used for 
FIR filter. The FTPN for the implemented FIR filter is presented in Fig. 3(a). 

 a) b)  
 

 
Figure 3. FIR Filter Process Network Before and After Reconfiguration 

The implementation of FIR filter was used for testing fault handling in case of 
interface node failure. The interface node in1 having one output channel was 
terminated and further execution of the network was observed. As the node in1 
stopped writing data to the channel connecting nodes in1 and digp, the node digp 
consumed all data tokens from this channel and was blocked. After timeout the node 
moved to control state. In this state the node digp checked the state of the channel 
connecting in1 and digp and state of the node in1. Since the node in1 was not 
functioning, its operations were transferred to the node digp, and the channel between 
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in1 and digp was destroyed. Afterwards, the node digp moved to reading state and 
continued network execution. The FIR filter process network after modification is 
presented in Fig. 3(b). 
Modelling failures and their handling in FTPN demonstrated, that in case of network 
node failure, the execution of the network can be continued by redistributing 
operations of the faulty node to the other nodes in the network and data loss can be 
minimized by reducing the length of channels. 

6. Conclusions and Future Work 
Process networks and their modifications used for development of digital signal 
processing systems do not ensure fault handling of the elements of the network. 
Therefore these process networks are not applicable for development of critical 
systems. For development of fault tolerant systems, dynamic reconfiguration of these 
systems is required. Such dynamic reconfiguration is ensured in fault tolerant process 
network proposed in this work. The main purpose of dynamic reconfiguration is 
reaction to system execution faults and handling of these faults. 
The proposed FTPN uses roll-forward recovery from failures, which reduces 
requirements for computational and memory resources. Delay, load sharing and 
redundancy techniques are used for timely fault detection and handling. The 
possibility of dynamic reconfiguration can be ensured by introducing the control state 
for elements in process network. The proposed fault tolerant process network is 
formally specified using LTS, which enables specification of all states and transitions 
between these states for network nodes and channels. 
In order to ensure the correct reallocation of operations from one node to another, 
these operations must be defined as sequences of atomic actions. Specification of 
atomic actions ensures that functionality of the process network does not change after 
reallocating operations of the faulty node to the other nodes in the network. 
Currently the algorithms for processing several simultaneous failures are under 
development. In the future we are planning the implementation of the proposed FTPN 
in dedicated hardware and/or computer network. 

References 
Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C. (2004), Basic Concepts and 

Taxonomy of Dependable and Secure Computing, IEEE Transactions on 
Dependable and Secure Computing, vol. 1, no.1, pp. 11-33. 

Bhattacharya, B., Bhattacharyya, S. (2001), Parameterized dataflow modeling for 
DSP systems, IEEE Transactions on Signal Processing, vol. 49(10), pp. 2408-
2421. 

Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J. (1996), Cycle-static dataflow, 
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 44, pp. 397-
408. 

 



11th Panhellenic Conference in Informatics 320

Čeponis, J., Kazanavičius, E., Mikuckas, A. (2002), Design and analysis of DSP 
systems using Kahn process networks, Ultragarsas, vol. 45, pp. 43-46. 

Čeponis, J., Kazanavičius, E., Mikuckas, A. (2006), Fault Tolerant Process 
Networks, Information Technology And Control, vol. 35, no. 2, pp. 124-130. 

Geilen, M., Basten, T. (2004), Reactive Process Networks, in Proc. EMSOFT’04, pp. 
137-146. 

Haim, F., Sen, M., Ko, D.-I., Bhattacharyya, S., Wolf, W. (2006), Mapping 
Multimedia Applications onto Configurable Hardware with Parameterized Cyclo-
Static Dataflow Graphs, in Proc. International Conference on Acoustics, Speech, 
and Signal Processing, pp. 1052-1055. 

Hofstee, D., Juurlink, B.H.H. (2002), Determining the criticality of processes in Kahn 
process networks for design space exploration, in Proc. ProRISC 2002, pp. 292-
297. 

Huth, M. (2005), Labelled transition systems as a Stone space, Logical Methods in 
Computer Science, vol. 1, pp. 1–28. 

Kahn, G. (1974), The semantics of a simple language for parallel programming, in 
Proc. IFIP Congress 74, pp. 471-475. 

Lee, E., Messerschmitt, D. (1987), Synchronous data flow, IEEE Proceedings, vol. 
75(9), pp. 1235-1245. 

Lee, E., Parks, T. M. (1995), Dataflow process networks, IEEE Proceedings, vol. 
83(5), pp. 773-798. 

Magee, J., Kramer, J. (2006), Concurrency: State Models and Java Programs, 2nd 
Editon, ISBN: 0-470-09355-2, p. 432. 

Neuendorffer, S., Lee, E. A. (2004), Hierarchical reconfiguration of dataflow models, 
in Proc. Second ACM-IEEE International Conference on Formal Methods and 
Models for Codesign , pp. 179-188. 

Olson, A.G., Evans, B.L. (2005), Deadlock detection for distributed process 
networks, in Proc. IEEE International Conference on Acoustics, Speech and Signal 
Processing, vol. 5, pp. 73-76. 

 

http://www.icassp2005.com/
http://www.icassp2005.com/

