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Abstract 
We review some recent advances for solving core algorithmic problems encountered in public 
transportation systems. We show that efficient algorithms can make a great difference both in 
efficiency and in optimality, thus contributing significantly to improving the quality and 
service-efficiency of public transportation systems.  
 

1. Introduction 
Mobility of passengers and goods has been increasing steadily over the past years, 
and it is likely that this trend will continue. Part of this growth in mobility is 
facilitated by public transportation systems, which are of great importance for 
economic growth and quality of life (especially within Europe). To achieve these vital 
socio-economic goals, public transportation systems have to improve the quality and 
efficiency of their management as well as the services they provide. This gives rise to 
a wealth of optimization problems, whose common characteristic is their high 
complexity and their sheer size. 

One of the key problems in public transportation systems is the management of 
timetable information. In particular, the primary task is how to organize the 
information so that subsequent queries asking for optimal itineraries (best routes) can 
be efficiently answered. The main challenge is to cope with a typical situation in 
public transportation systems, where a vast number of on-line queries have to be 
processed as fast as possible. Such a query-intensive scenario is encountered, for 
instance, in (European) public railway transport, where a central server is directly 
accessible to any customer either through terminals in train stations or through a web 
interface, and has to answer a potentially infinite number of customer queries asking 
for their optimal itineraries (for example, the server of the German railways receives 
about 100 queries per second). Note that a similar situation is encountered in other 
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real-time application systems (e.g., car-traffic information systems, database queries, 
web searching, etc). The main goal in all such applications is to reduce the average 
response time for a query. 

Efficient answering of timetable information is related to two core algorithmic 
problems: how to model timetable information so that itinerary queries can be 
answered fast and how to answer the query efficiently and optimally (i.e., correctly). 

In this work, we review some recent advances regarding these two core algorithmic 
problems and show that efficient algorithms can make a great difference both in 
efficiency and in optimality. More specifically, we consider two approaches that 
model timetable information in public transportation systems as shortest path 
problems in weighted graphs. In the time-expanded approach every event at a station, 
e.g., the departure of a train, is modelled as a node in the graph, while in the time-
dependent approach the graph contains only one node per station. Both approaches 
had been considered for a simplified version of the most frequently encountered 
timetable problem: the earliest arrival problem, where the goal is to find a train 
connection from a departure station A to an arrival station B that departs from A later 
than a given departure time and arrives at B as early as possible. So far, there were 
only theoretical arguments in favor of the time-dependent approach. In [Pyrga et al 
(2007)], the first extensive experimental comparison of the two approaches was 
carried out, along with new (theoretical and practical) extensions of them towards 
realistic modelling. In addition, several new, provably correct, heuristics are 
introduced to speedup query time. The evaluation was conducted on real-world data 
sets, and the experiments showed dramatic improvements in query time. 

The most commonly used approach for answering shortest path queries employs 
Dijkstra's algorithm and/or variants of it. Consequently, the main challenge is how to 
reduce the algorithm's search-space (number of vertices visited), as this would 
immediately yield a better query time. In [Wagner et al. (2005)], the full exploitation 
of geometry-based algorithms was investigated using both street and railway 
networks. In that paper, it is shown that the search space of Dijkstra's algorithm can 
be significantly reduced (to 5% - 10% of the initial graph size) by extracting 
geometric information from a given layout of the graph and by encapsulating pre-
computed shortest path information in resulted geometric objects, called containers. 
Moreover, the dynamic case of the problem was investigated, where edge costs are 
subject to change and the geometric containers have to be updated. 

It is worth mentioning that the current commercial systems, e.g., the HAFAS system 
[HAFAS] used by the German and most European railways, provide itineraries that 
may not be optimal (given some optimization criterion). The main reason for such 
non-optimal itineraries is that the algorithms behind the systems employ heuristic 
methods to reduce the search space (in order to achieve an acceptable response time) 
that do not always guarantee optimal solutions. 
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2. Itinerary Problems and Timetable Information Modelling 
A timetable consists of data concerning stations (or bus stops, ports, etc), trains (or 
busses, ferries, etc), connecting stations, departure and arrival times of trains at 
stations, and traffic days. A timetable information problem, or an itinerary query, 
defines a set of valid connections, and an optimization criterion (or criteria) on that 
set of connections. The problem is to find the optimal connection (or a set of optimal 
connections) with respect to the specific criterion or criteria. Typically, queries come 
in very large sequences and have to be answered on-line (i.e., in real-time). The two 
most important criteria are the earliest arrival and the minimum number of transfers. 

2.1 Itinerary Problems 
The most frequently encountered query is the so-called earliest arrival problem. In 
this problem, we are given a tuple  denoting a departure station A, an 
arrival station B, and a departure time . Connections are valid if they do not depart 
before the given departure time , and the optimization criterion is to minimize the 
difference between the arrival time and the given departure time. Additionally, one 
may ask among all connections that are solutions to such a query for the connection 
that departs as late as possible (latest departure problem). 
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Another important query concerns the so-called minimum number of transfers 
problem. In this problem, we are given a departure station A and an arrival station B. 
All connections from A to B are valid and the optimization criterion is to minimize the 
number of train transfers.  

One can also consider bicriteria or Pareto-optimal problems with the earliest arrival 
(EA) and the minimum number of transfers (MNT) as the two criteria.  

2.2 Basic Timetable Information Modelling 
There are two main approaches for modelling timetable information: the time-
expanded model and the time-dependent one. 

The time-expanded model consists of the directed time-expanded graph, which is 
constructed as follows [Schulz et al (2000)]. There is a node for every time event 
(departure or arrival) at a station, and there are two types of edges. Let 

 denote an elementary connection interpreted as train Z leaves 

station  at time , and the next stop of train Z is station at time . For every 
such elementary connection in the timetable, there is a train-edge in the graph 
connecting a departure node, belonging to station  and associated with time , 

with an arrival node, belonging to station  and associated with time . In other 
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words, the endpoints of the train-edges induce the set of nodes of the graph. For each 
station S, all nodes belonging to S are ordered according to their time values. Let 

 be the nodes of S in that order. Then, there is a set of stay-edges kvv ,,1 …
,11),,( 1 −≤≤+ kivv ii  and  connecting the time events within a station and 

representing waiting within that station. The length of an edge (u,v) is  (for 
edges over midnight the length is 

),( 1vvk

uv tt −

uv tt −+1440 , respectively), where  and  are 
the time values associated with u and v, respectively. 
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A shortest path in the time-expanded digraph from the first departure node s at the 
departure station A with departure time later than or equal to the given start time  to 
one of the arrival nodes of the destination station B constitutes a solution to the 
earliest arrival problem in the time-expanded model. The actual path can be found by 
Dijkstra's algorithm [Dijkstra (1959)]. 

0t

The time-dependent model is also based on a digraph, called time-dependent graph 
[Brodal and Jacob (2003)]. In this graph there is only one node per station, and there 
is an edge e from station A to station B if there is an elementary connection from A to 
B. The length of an edge ),( wve =  depends on the time at which this particular edge 
will be used during the algorithm. In other words, if T is a set denoting time, then the 
length of an edge (v,w) is given by ttf wv −)(),( , where t is the departure time at v, 

 is a function such that TTf wv →:),( ')(),( ttf wv = , and  is the earliest possible 
arrival time at w. The time-dependent model is based on the assumption that 
overtaking of trains on an edge is not allowed, i.e., for any two given stations A and 
B, there are no two trains leaving A and arriving to B such that the train that leaves A 
second arrives first at B. A modification of Dijkstra's algorithm can be used to solve 
the earliest arrival problem in the time-dependent model. Let D denote the departure 
station and  the earliest departure time. The differences, w.r.t. Dijkstra's algorithm, 
are: set the distance label of the starting node corresponding to the departure station D 
to  (and not to 0), and compute the edge lengths “on-the-fly”. Since Dijkstra's 
algorithm is a label-setting shortest-path algorithm, whenever an edge  is 
considered the distance label 

tt ≥'
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)(Aδ  of node A is optimal. In the time-dependent 
model, )(Aδ  denotes the earliest arrival time at station A. In other words, we indeed 
know the earliest arrival time at station A whenever the edge  is 
considered, and therefore we know at that stage of the algorithm which train has to be 
taken to reach station B via A as early as possible: the first train that departs later than 
or equal to the earliest arrival time at A. The particular connection (among the 
possibly many between A and B) can be easily found by binary search if the 
elementary connections are maintained in a sorted array. 
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3. Realistic Timetable Information Modelling 
The modelling mentioned in Section 2 makes two assumptions: (i) transfer time 
between stations takes zero time; and (ii) all trains operate daily (i.e., the timetable is 
identical for every day). Clearly, both assumptions are not realistic. 

In [Pyrga et al (2007)], extensions to the aforementioned time-expanded and time-
dependent modes have been proposed to take into account the non-negligible transfer 
times between trains at stations as well as to incorporate the different traffic days. In 
Section 3.1, we present the new models and discuss the solution of the earliest arrival 
problem. In Section 3.2, we discuss the solution to other problems. 

3.1 Realistic Models and the Earliest Arrival Problem 

To incorporate transfer times in the time-expanded model, [Pyrga et al (2007)] 
introduced the realistic time-expanded graph, which is constructed as follows. 
Starting from the original time-expanded graph, for each station, a copy of all 
departure and arrival nodes in the station is maintained which we call transfer-nodes. 
The stay-edges are now introduced between the transfer-nodes. For every arrival node 
there are two additional outgoing edges: one edge to the departure of the same train, 
and a second edge to the transfer-node with time value greater than or equal to the 
sum of the time of the arrival node and the minimum time needed to change trains at 
the given station. If the earliest arrival problem is to be solved, the edge lengths are 
defined as in the definition of the original model. 

To incorporate transfer times in the time-dependent model, [Pyrga et al (2007)] 
extended the original model to include information on train routes, thus introducing 
the so-called train-route graph. Assume that we are given a set of train routes and 
their respective time schedules. The train-route graph is constructed as follows. We 
say that stations , , form a train route if there is some train 
starting its journey from  and visiting consecutively  in turn. If there 
are more than one trains following the same schedule (with respect to the order in 
which they visit the above nodes), then we say that they all belong to the same train 
route. The node set of the train-route graph consists of the station nodes  
representing the stations, and for each station S of one additional route-node per route 
that passes through the station S. There are three types of edges: (i) edges from each 
station-node to the route-nodes belonging to the same station that model the boarding 
of a train belonging to the specific route; (ii) edges from each route-node to the 
station-node that model the getting-off a train at that station; (iii) for each train route 

 edges that connect the corresponding route-nodes that model the 
actual train trips. To solve the earliest arrival problem with transfer times, edge 
lengths are defined as follows. The edges modelling boarding a train at a station S are 
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assigned the transfer time , the edges modelling getting-off a train are assigned 
zero length, and the edges representing the train routes have time-dependent lengths 
as in the basic modelling. Given the query to solve, all internal edges are assigned 
zero length, and the modified version of Dijkstra's algorithm (see Section 2) is 
applied. 

sg

To take into account the traffic days in the time-expanded approach, edges 
representing elementary connections of trains that are not valid at a particular day can 
be simply ignored during Dijkstra's algorithm. Nevertheless, the algorithm has to be 
slightly modified because it may happen that an optimal connection stays more than a 
day at a station, and such connections would not be found otherwise (see [Pyrga et al 
(2007)] for the details).  

In the time-dependent approach, the traffic days are considered in the computation of 
the time-dependent edge lengths. 

3.2 Other Problems 
The realistic time-expanded graph as well as the train-route graph can be used to 
solve a minimum number of transfers query with a similar method [Pyrga et al 
(2007)]: edges that model transfers are assigned a length of one, and all the other 
edges are assigned length zero. In the time-expanded case all incoming edges of 
transfer nodes have length one, whereas in the time-dependent case the edges that 
represent getting-off a train, except those belonging to the departure station, are 
assigned length one, and all other edges have length zero. Note that the edge lengths 
in the time-dependent train-route graph are all static. A shortest path in one of the 
graphs from a node belonging to (respectively representing) the departure station to a 
node belonging to (respectively representing) the arrival station provides a solution to 
the minimum number of transfers problem. 

Determining a connection optimized for the latest departure problem combined with 
the earliest arrival can be done in the time-expanded case by introducing the latest 
departure as second criterion and determining the lexicographically first solution. In 
the time-dependent model the standard approach is to carry out a backward search 
from the destination station to the arrival station once the earliest arrival at the 
destination station is known. 

Appropriate (non-trivial) extensions of the aforementioned algorithms can provide 
solutions to bicriteria optimization problems. In particular, the following bicriteria 
optimization problems have been considered and solved in [Pyrga et al (2007)] with 
the earliest arrival (EA) and the minimum number of transfers (MNT) as the two 
criteria: (i) finding the so-called Pareto-curve, which is the set of all undominated 
Pareto-optimal paths (the set of feasible solutions where the attribute-vector of one 
solution is not dominated by the attribute-vector of another solution); (ii) finding the 
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solution that minimizes one criterion while retaining the second below a given 
threshold; (iii) finding the lexicographically first Pareto-optimal solution (e.g., find 
among all connections that minimize EA the one with the minimum number of 
transfers).  

4. The Impact of Efficient Algorithms 
The above discussion reveals that the core procedure underlying all algorithms for the 
problems considered is Dijkstra’s algorithm. It turns out, however, that a 
straightforward application of the classical Dijkstra’s algorithm (even with the most 
efficient priority queue) can be much slower than variations of the algorithm 
enhanced with speedup techniques. For instance, the study in [Schulz et al (2000)] 
showed that Dijkstra’s algorithm can be 60 times slower. 

In [Pyrga et al (2007)], an improvement of the goal-directed search speedup 
technique was developed that is applied to both models, along with a host of model-
specific speedup heuristics. Experiments were performed on several real-world 
railway networks exhibiting dramatic speedups in query times. For instance, in a part 
of the German railway timetable comprising of 6700 stations, 500000 departures and 
arrivals, and 100000 elementary connections (that correspond to the long-distance 
railway traffic in Germany) the following query times were achieved for the problems 
considered. 

 
Problem Realistic Time-Expanded 

Time [ms] 
Realistic Time-Dependent 

Time [ms] 
EA 78 50 
MNT 125 38 
Lex-First (MNT,EA) 161 83 
All Pareto optima 287 181 

 

The above experimental results demonstrate that: (i) the time-dependent approach is 
better (this is mainly due to the smaller in size resulted graphs); (ii) the fundamental 
earliest arrival problem can be solved in just 50 milliseconds; and (iii) finding all 
Pareto optimal solutions (which can be, in principle, exponentially large) takes less 
than 1/5 of a second. 

Further speedup techniques were considered in [Wagner et al (2005)]. In that paper, a 
very fundamental observation on shortest paths was used: an edge that is not the first 
edge on a shortest path to the target can be safely ignored in any shortest path 
computation to this target. The main idea of the approach in [Wagner et al (2005)] is 
as follows. Assume that during preprocessing a set of nodes S(e) is computed, for 
each edge e, containing all nodes that can be reached by a shortest path starting with 

 



11th Panhellenic Conference in Informatics 440 

e. Subsequently, when Dijkstra's algorithm is executed, those edges e for which the 
target is not in S(e) are ignored. As storing all sets S(e) would require O(nm) space, 
this prohibitive space requirement is relaxed by storing instead a geometric object, 
called container, for each edge that contains at least the nodes in S(e). The shortest 
path queries are then answered by Dijkstra's algorithm restricted to those edges for 
which the target node is inside their associated geometric container. Note that this 
method still leads to a correct result (optimal path), although it may increase the 
number of visited nodes to more than the strict minimum (i.e., the number of nodes in 
the shortest path). In order to generate the geometric containers, we use the given 
layout of the graph. 

In [Wagner et al (2005)], 12 different types of geometric containers were used. It 
turned out that the simplest container (bounding box) gives the fastest 
implementation, since it reduces the search space (number of nodes visited) of 
Dijkstra's algorithm to only 5% to 10% of the initial graph size. Moreover, efficient 
algorithms for dynamically updating the shortest path information encapsulated in the 
containers are also given in [Wagner et al (2005)]. 

5. Conclusions and Future Research 
We reviewed some recent advances regarding the efficient answering of timetable 
itinerary queries, which is related to two core algorithmic problems: how to model 
timetable information so that itinerary queries can be answered fast and how to 
answer the query efficiently and optimally (i.e., correctly). We presented two new 
realistic models and showed that efficient algorithms can make a great difference both 
in efficiency and in optimality. 

Currently, a fair amount of research is carried out in order to solve efficiently various 
optimization problems in railways, since they constitute the most complex and largest 
in scale transportation setting. Railway optimization deals with planning and 
scheduling problems over several time horizons (e.g., planning the train lines, 
constructing the timetable, scheduling the crew, etc). One of the most notable efforts 
is the EC-funded project ARRIVAL (Algorithms for Robust and online Railway 
optimization: Improving the Validity and reliAbility of Large scale systems), which is 
concerned with two important and actually unexplored facets of planning that pose 
even harder optimization questions: robust planning and online (real-time) planning. 
These two, tightly coupled, facets constitute a proactive and a reactive approach, 
respectively, to deal with disruptions to the normal operation over a short or medium 
time horizon. Robust planning is concerned with the development of an apriori plan 
that allows the absorption of disruptions to the best possible extend. Online planning 
is concerned with real-time decision making when, typically unpredictable, 
disruptions in daily operations occur, and before the entire sequence of disruptions is 
known. 
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The main goal of ARRIVAL is to develop the necessary foundational algorithmic 
research in order to provide ingenious and sound answers to the fundamental 
efficiency and quality issues encapsulated in robust and online planning of complex, 
large-scale systems as those in railways. More details on this research effort can be 
found in [ARRIVAL (2006)]. 

References 
ARRIVAL Project (2006), funded by the FET Unit of EC (priority IST, 6th 

Framework Programme) under contract no. FP6-021235-2, URL: 
http://arrival.cti.gr/.  

Brodal G.S., and Jacob R. (2003),  Time-dependent networks as models to achieve 
fast exact time-table queries, In Proc. 3rd Workshop on Algorithmic Methods and  
Models for Optimization of Railways – ATMOS 2003, Electronic Notes in 
Theoretical Computer Science, Vol.92 (2004), Elsevier. 

Dijkstra E.W. (1959), A note on two problems in connexion with graphs, Numerische 
Mathematik, Vol.1, pp. 269-271. 

HAFAS, A timetable information system by HaCon Ingenieurgesellschaft mbH, 
Hannover, Germany. URL: http://www.hacon.de/hafas/. 

Pyrga E., Schulz F., Wagner D., and Zaroliagis C. (2007), Efficient Models for 
Timetable Information in Public Transportation Systems, ACM Journal of 
Experimental Algorithmics, Vol.12, No.2.4, pp.1-39. 

Schulz F., Wagner D., and Weihe K. (2000), Dijkstra's Algorithm On-line: An 
Empirical Case Study from Public Railroad Transport, ACM Journal of 
Experimental Algorithmics, Vol.5, No.12. 

Wagner D., Willhalm T., and Zaroliagis C. (2005), Geometric Containers for 
Efficient Shortest Path Computation, ACM Journal of Experimental Algorithmics, 
Vol. 10, No.1.3, pp.1-30. 

 
 

 

http://arrival.cti.gr/
http://www.hacon.de/hafas/

