

New Techniques for Incremental Data Fusion in
Distributed Sensor Networks

Damianos Gavalas1, Charalampos Konstantopoulos2, Basilis Mamalis3,
Grammati Pantziou4

1Department of Cultural Technology and Communication, University of the Aegean,

Mytilini, Lesvos Island, Greece
dgavalas@aegean.gr

2Research Academic Computer Technology Institute, Patras, Greece

konstant@cti.gr

3Department of Informatics, Technological Educational Institution of Athens, Athens,
Greece

{pantziou, vmamalis}@teiath.gr

Abstract
The use of mobile agents for data fusion in wireless sensor networks has been recently
proposed in the literature to answer the scalability problem of client/server model. In this
article, we consider the problem of calculating a near-optimal route for a mobile agent that
incrementally fuses the data as it visits the nodes in a distributed sensor network. The order of
visited nodes affects not only the quality but also the overall cost of data fusion. We propose
two heuristic algorithms that adapt methods usually applied in network design problems in the
specific requirements of sensor networks. They suggest the proper number of MAs that
minimizes the overall data fusion cost and construct near-optimal itineraries for each of them.

Keywords: Sensor networks, mobile agents, Constrained Minimum Spanning Trees

1. Introduction
Multiple sensor data fusion is an evolving technology, concerning the problem of how
to fuse data from multiple sensors in order to make a more accurate estimation of the
environment [Qi et. Al. (2001)]. It improves reliability while offering the opportunity
to minimize the data retained. Applications of data fusion cross a wide spectrum,
including environment monitoring, automatic target detection and tracking, battlefield
surveillance, remote sensing, global awareness, etc [Akyildiz et. Al. (2002)]. They are
usually time-critical, cover a large geographical area, and require reliable delivery of
accurate information for their completion. Most energy-efficient proposals are based
on the traditional client/server computing model to handle multisensor data fusion in

mailto:dgavalas@aegean.gr
mailto:konstant@cti.gr

11th Panhellenic Conference in Informatics 600

Distributed Sensor Networks (DSNs); in that model, each sensor sends its sensory
data to a back-end processing element (PE) or sink. However, as advances in sensor
technology and computer net-working allow the deployment of large amount of
smaller and cheaper sensors, huge volumes of data need to be processed in real-time.
In this paper, we propose the usage of mobile agents in DSNs for data fusion tasks as
an alternative to the traditional client/server model.

The remainder of the paper is organized as follows: Section 2 reviews works related
to our research. Section 3 discusses the design and functionality of the first of our
heuristic algorithms for designing near-optimal itineraries for mobile agents
performing data fusion tasks in DSNs. In Section 4, we present our second approach
for constructing the itineraries that will be followed by mobile agents. Finally,
Section 5 concludes the paper and presents future directions of our work.

2. Related Work

Mobile agent (MA) technology has been proposed as an answer to the scalability
problems of centralized models. The term MA refers to an autonomous program with
the ability to move from host to host and act on behalf of users towards the
completion of a given task [Milojicic et. Al. (1999)]. DSN environments form a
promising application area for MAs; yet, they pose new challenges as the link
bandwidth is typically much lower than that of a wired network and sensory data
traffic may even exceed the network capacity.

surveillance
region

sensors

Processing
element

(a) (b)

surveillance
region

sensors

mobile

agent

Processing
element

Figure 1. Centralized vs. Mobile Agents-based data fusion in Distributed Sensor
Networks

To solve the problem of the overwhelming data traffic, [Qi et. Al. (2001)] and [Qi et.
Al. (2001)] proposed the use of MAs for scalable and energy-efficient data
aggregation. By transmitting the software code (MA) to sensor nodes, a large amount
of sensory data may be filtered at the source by eliminating the redundancy. MAs
may visit a number of sensors and progressively fuse retrieved sensory data, prior to
returning to the PE to deliver the data. This scheme proves more efficient than

Wearable and Mobile Computing 601

traditional client/server model, wherein row sensory data are transmitted to the PE
where data fusion takes place (see Fig. 1).

To the best of our knowledge, only [Qi et. Al. (2001)] and [Wu et. Al. (2004)] deal
with the problem of designing optimal MA itineraries in the context of DSNs. In [Qi
et. Al. (2001)], Qi and Wang proposed two heuristic algorithms to optimize the
itinerary of MAs performing data fusion tasks. In Local Closest First (LCF)
algorithm, each MA starts its route from the PE and searches for the next destination
with the shortest distance to its current location. In Global Closest First (GCF)
algorithm, MAs also start their itinerary from the PE node and select the node closest
to the center of the surveillance region as the next-hop destination.

The output of LCF-like algorithms highly depends on the MAs original location,
while the nodes left to be visited last are associated with high migration cost
[Kershenbaum (1993)]; the reason for this is that they search for the next destination
among the nodes adjacent to the MA’s current location, instead of looking at the
‘global’ network distance matrix. On the other hand, GCF produces in most cases
messier routes than LCF and repetitive MA oscillations around the region center,
resulting in long route paths and undesirable performance [Qi et. Al. (2001)][Wu et.
Al. (2004)].

Wu et al proposed a genetic algorithm-based solution for computing routes for an MA
that incrementally fuses the data as it visits the nodes in a DSN [Wu et. Al. (2004)].
Although providing superior performance (lower cost) than LCF and GCF algorithms,
this approach implies a time-expensive optimal itinerary calculation (genetic
algorithms typically start their execution with a random solution ‘vector’ which is
improved as the execution progresses), which is unacceptable for time-critical
applications, e.g. in target location and tracking.

Most importantly, both the approaches proposed in [Qi et. Al. (2001)] and [Wu et. Al.
(2004)] involve the use of a single MA object launched from the PE station that
sequentially visits all sensors, regardless of their physical location on the plane. Their
performance is satisfactory for small DSNs; however, it deteriorates as the network
size grows and the sensor distributions become more complicated. This is because the
MA’s round-trip delay increases linearly with network size, while the overall
migration cost increases exponentially as the traveling MA accumulates into its state
data from visited sensors [Fuggeta et. Al. (1998)]. The growing MA’s state size not
only results in increased consumption of the limited wireless bandwidth, but also
consumes the limited energy supplies of sensor nodes.

Our algorithms have been designed on the basis of thee objectives: (a) MA itineraries
should be derived as fast as possible and adapt quickly to changing networking

11th Panhellenic Conference in Informatics 602

conditions (hence, efficient heuristics are needed), (b) MA itineraries should include
only sensors with sufficient energy availability and exclude those with low energy
level, (c) The number of MAs involved in the data fusion process should depend on
the number and the physical location of the sensors to be visited; the order an MA
visits its assigned nodes should be computed in such a way as to minimize the overall
migration cost.

2. The First Near–Optimal Itinerary Design (FNOID) Algorithm

The problem of designing optimal itineraries is similar to traditional network design
problems such as the Constrained Minimum Spanning Trees (CMST) problems
[Kershenbaum (1993)]. Our First NOID (Near–Optimal Itinerary Design) algorithm
adapts some basic ideas of Esau-Williams (E-W) algorithm [Esau et. Al. (1966)] in
the requirements of itinerary planning problem.

The cost function used in E-W algorithm considers selected links cost as the only
contributing factor to the total itinerary cost. This is certainly not adequate metric to
evaluate the cost of agents itineraries ctotal. A key factor also affecting ctotal is the agent
size; more importantly, the agent size increment rate [Fuggeta et. Al. (1998)], which
depends on the amount of data collected by the MA on every sensor. Let us assume
that a set of itineraries I = {I0, I1, …,Ik-1} is constructed, each assigned to an individual
MA object i. Each itinerary Im includes a set of sensors to be sequentially visited by a
single MA: Im = {S0, S1, .. , Sn, S0}. Note that all itineraries originate and terminate at
the PE node S0. The total cost per polling interval over all itineraries |I| becomes:

()
11

0 0

iII

total ij i ij
i j

c d s
−−

= =

c= + ⋅∑∑ (1)

where is the amount of data collected by the iijd th MA on the first j visited sensors, si
the MA initial size and cij the cost of utilizing the link traversed by the MA i on its jth
hop, i.e. the wireless link connecting sensors Sj and Sj+1 (cij is given by the network
cost matrix). In principle, the FNOID algorithm aims at constructing a set of
itineraries I minimizing the cost function of equation (1).

An output of the FNOID algorithm is illustrated in Fig. 2. The algorithm’s output for
the particular DSN configuration of Fig. 2 is based on the cost matrix presented in
Table 1. In our prototype implementation, the calculation of the DSN cost matrix
entries is only based on the spatial distance between sensors. This decision approach
has been taken because the transmission power (hence, energy) required to transmit
data between pairs of sensors increases linearly with their physical distance [Akyildiz

Wearable and Mobile Computing 603

et. Al. (2002)][Wu et. Al. (2004)]. However, as a future extension, we intend to
incorporate sensor energy availability metric in the calculation of cost matrix values.

The itinerary design algorithm is executed at the PE node; this is a reasonable choice
since an MA always starts its data collection journey from the PE node, which can
usually be equipped with more powerful computing resources than regular sensor
nodes. The PE node has the predetermined knowledge necessary for performing the
global optimization, such as the geographical locations (through GPS interfaces) and
transmitting/receiving parameters of sensor nodes.

C

F

E
B

D

A

1

2

3

4

5 6

P ro c e s s in g
E le m e n t

C

F

E
B

D

A

1

3

4

5

2

3

2

1

P ro ce s s in g
E le m e n t

(a) (b)

Figure 2. (a) Output of FNOID (the sequence numbers indicate the order in which
the corresponding MA migrations are accepted, i.e. the algorithm’s iteration

sequence numbers) (b) MA itineraries derived from the FNOID algorithm’s output.

Unlike LCF and GCF algorithms, FNOID takes into account the amount of data
accumulated by MAs at each visited sensor (without loss of generality, we shall
assume this is a constant d). Namely, it recognizes that travelling MAs become
‘heavier’ while visiting sensors without returning back to the PE to ‘unload’ their
collected data [Fuggeta et. Al. (1998)]. Therefore, FNOID promotes small itineraries
enabling the parallel employment of multiple cooperating MAs, each visiting a subset
of sensors.

Specifically, the aim of FNOID algorithm is, given a set of sensors S = {S0, S1, …, Sn-

1}, the PE node S0 and the cost matrix C, to return a set of near-optimal itineraries I =
{I0, .., Ik}, all originated and terminated at the PE. Initially, we assume S (= n)
itineraries I0, .., In-1, as many as the network nodes, each containing a single host (S0,

11th Panhellenic Conference in Informatics 604

S1, …, Sn-1, respectively). On each algorithm step, two nodes i and j are ‘connected’
and, as a result, the itineraries I(i) and I(j) including these hosts respectively are
merged into a single itinerary.

As mentioned in Section 2, LCF and GCF algorithms usually fail as they tend to leave
hosts located far from the center stranded since they prioritize the inclusion of hosts
closed to last selected host or the center. As a result, relatively expensive links are left
last to be included in the solution, significantly increasing the overall cost. A way of
dealing with this problem is to pay more attention to nodes far from the center, giving
preference to links incident upon them. FNOID algorithm accomplishes this by using
the concept of ‘tradeoff function’ ti ,j associated with each link (i, j), defined by:

0,

)()(

1
,, Si

jIiI

k
jiji Cdct −+= ∑

+

=

 (2)

where ci,j is the cost of link connecting nodes i and j.

Table 1. Cost matrix of the DSN shown in Fig. 2
 S0 A B C D E F

S0 - 50 40 62 56 42 88
A - 22 24 58 73 177
B - 22 21 27 130
C - 19 39 131
D - 18 80
E - 73
F -

The concept of the tradeoff function is introduced in E-W algorithm, defined as
follows:

0,,, Sijiji Cct −= . Equation (2) extends and adapts this function in the
specific requirements of agent itinerary planning problem. In particular, the inclusion
of a parameter representing the amount of data collected from each host (d) and also
the number of hosts already included in the itineraries considered for merging, i.e.

)(iI and)(jI , obstructs the construction of large itineraries, thereby promoting the
formation of multiple itineraries, assigned to separate MAs. Equation (2) implies that
the more nodes an itinerary already includes the more difficult for a new host to
become part of that itinerary, especially when d is large.

In equation (2), is the cost of connecting I(i) to the PE S
0,SiC 0. Initially, this is simply

the cost of connecting node i directly to the PE. As i becomes part of an itinerary
containing other sensors, however, this changes to:

Wearable and Mobile Computing 605

00 ,)(, min SkiIkSi cC
∈

= (3)

On each algorithm’s step, trade-off function values ti,j are evaluated for all pairs (i,j),
except of those where nodes i and j are already part of the same itinerary; the
‘itineraries’ including the nodes that produce the minimum ti,j value are merged. For
instance, if the tradeoff function is minimized for the pair of nodes m and n, then I(m)
and I(n) are merged into one itinerary. When FNOID’s execution finishes, one or
more ‘sub-trees’ (groups of nodes) rooted at the PE node have been constructed; this
is shown on Fig. 2a, where the sequence numbers enclosed within circles indicate the
order in which individual links (or migrations) become accepted in the corresponding
algorithm steps. It is then a trivial task to produce the itineraries (started and
terminated at the PE node) for traversing the nodes of each sub-tree; these itineraries
correspond to a post-order traversal of the sub-trees (shown in Fig. 2b).

3. The Second Near–Optimal Itinerary Design (SNOID)
Algorithm

Now, we present the Second Near – Optimal Itinerary Design (SNOID) algorithm for
determining the number of Mobile Agents (MA) that should be used and the
itineraries these MA should follow. The main idea is to partition the area around the
Processing Element (PE) into concentric zones (Fig. 3) and start building the MA
paths with direction from the inner (close to PE) zones to the outer ones. The radius
of the first zone which includes the PE is equal to αrmax where α is an input parameter
in the range (0,1] and rmax is the maximum transmission range of any sensor node. All
sensor nodes inside this region are connected directly to the PE and these nodes will
be the starting points of the itineraries of the MAs. This also implies that the PE will
create as many MAs as the number k of these nodes (k=3 in our example). With the
inclusion of parameter α, we can control the amount of energy needed for the nodes
of the first zone to communicate with the PE.

So, compared with the FNOID algorithm, the SNOID algorithm determines the
number of MAs differently by taking only into account the cost of communication
between the PE and the first nodes of the itineraries. The basic assumption here is that
we should use as much MAs as possible, ideally one for each sensor node, and the
only restriction on doing this is the energy cost required for direct communication of
the PE with the first nodes of the itineraries.

With regard to the remaining zones, these have a constant width equal to rmax/2. So,
each sensor node in a zone can only communicate with the nodes of the same zone as
well as the nodes of the two adjacent zones. The end result of our technique will be k
trees each having as a root one of the k nodes of the first inner zone. Then, the

11th Panhellenic Conference in Informatics 606

itineraries of the MAs are derived easily, by the depth-first traversal of these trees,
short-cutting the route whenever possible.

The whole processing consists of two phases. In the first phase, we start from the
inner zones and proceed to the outer zones. When visiting a zone, we try to connect
each of the nodes with a node of the previous as well as the current zone which
already has a connecting path back to the PE. During this process, we pay attention to
the latency of the formed trees up to that point, and we do not connect a node to a tree
if the total walk time after this insertion on tree will exceed a certain threshold W. In
the following, we give more details of our technique.

Figure 3. Partitioning the area around PE into a number of zones

Assume that we have reached the zone i after have visited the first i-1 zones. In our
example, zone i is the outer zone. We consider now all the edges (u,v) that connect
nodes u of the current zone with nodes v of either the same zone or the previous zone
i-1. We also define the Potential Latency PL(u,v) of edge (u,v) as the ensuing latency
after connecting the node u to the tree of node v. If node v has not been already
connected to a tree, we assume that PL(u,v)=∞. The same value is also assumed when
PL(u,v) > W, e.g. when the inclusion of the node u to the tree of v increases the latency
of the walk along the tree beyond the bound W. In the example of Fig. 3, the PL value

Wearable and Mobile Computing 607

of the edge (u,v) is finite and under the bound W. We can also see the walk that will
be followed by an agent if the node u is attached to the tree of node v. The PL value
of the edge is exactly the latency of this walk, that is c(,)u v PE,e + d·ce,f + 2d·cf,v +
3d·cv,u + 4d·(cu,v + cv,g) + 5d·(cg,v + cv,f + cf,e + ce,PE).

Note that in the derivation of this expression we have not considered short-cutting the
MA route. Consider also the case of edge (q,t) which has an infinite PL value because
node t in zone i-1 has not been connected to a tree so far.

Now, we sort the edges according to their PL values and start examining the edges
with the order of increasing PL. If (u,v) is the edge currently under examination and
provided that PL(u,v) < ∞, we connect the node u to the tree of node v, with node v
being the parent of u in the tree. This also means that node u after connecting to the
tree of v has a path leading to the PE.

Now, all the edges (u,w) of node u with neighboring node w already being connected
to a tree are taken out of consideration and we continue with the remaining edges.
Notice also that for each edge which connects a node in the zone i with some node on
the tree of node u, we should recalculate the PL value since this latency surely
changes after the attachment of node u to the tree. We can also easily see that the
computational overhead for the PL re-evaluation is small, since the new values can be
derived incrementally from the previous PL values. Moreover, note that after the
connection of the node to a tree, all the edges pointing to this node may change their
PL from infinite to a finite value and so they should be reconsidered again.

After adjusting the PL values of edges and possibly changing the node visiting order
accordingly, we continue examining the remaining edges till we find that all PL
values are equal to ∞. The start vertices of these edges are nodes of zone i which
cannot connect to a tree spanning the first i zones either because all candidate trees
have high latency or because their mounting points in zone i or i-1 have not been
connected to any tree so far.

After zone i, we proceed to zone i+1 and we apply the same method as above. We
continue till visiting all the zones around the PE. At this point, we have finished the
first phase of our technique.

In the second phase, we will try to connect all the nodes that could not be connected
to a tree in the first phase. For achieving this, we now allow more possibilities for
each node to connect to a tree. Specifically, for each node u belonging to a zone i, we
consider all the edges connecting this node with nodes of the same zone as well as
nodes of the zone i-1 and i+1. Similarly to the first phase, we estimate the PL values
of these edges but now we globally sort these values in an increasing order

11th Panhellenic Conference in Informatics 608

irrespectively of zones they belong to. Then, we visit the edges starting from the edge
with the lowest PL value and proceeding to higher values. Now, each time a node is
connected to a tree, we calculate again the new PL values of the affected edges. Also
again, an edge is removed from the list of the edges to be visited only when it
connects nodes already connected to trees.

Generally, the second phase is executed till we find that all remaining edges have
infinite values. This indicates that there are nodes that cannot be connected with the
current value of threshold W. In order to connect these nodes, we double the value of
W and we execute again the second phase. If necessary, we continue doubling the W
value and then executing the second phase till all nodes connect to some tree.

4. Conclusions and Future Work

In this article we presented two efficient heuristic algorithms that derive near-optimal
itineraries for MAs performing incremental data fusion in DSN environments. Our
algorithms consider spatial distance among sensor nodes for constructing MA
itineraries and are shown to outperform alternative existing approaches.

References
Akyildiz F., Su, W., Sankarasubramaniam, Y., Cayirci, E. (2002), A survey on sensor

networks, IEEE Communications Magazine, August, pp. 102-114.
Esau, L.R., Williams, K.C. (1966), On teleprocessing system design. Part II - A

method for approximating the optimal network, IBM Systems Journal, vol. 5, pp.
142–147.

Fuggeta, A., Picco, G.P., Vigna, G. (1998), Understanding Code Mobility, IEEE
Transactions on Software Engineering, vol. 24, no. 5, pp. 346–361.

Kershenbaum, A. (1993), Telecommunications Network Design Algorithms, McGraw-
Hill.

Milojicic, D. (1999), Mobile agent applications, IEEE Concurrency, vol. 7, no. 3.
Qi, H., Iyengar, S.S., Chakrabarty, K. (2001), Multi-Resolution Data Integration

Using Mobile Agents in Distributed Sensor Networks, IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Rev., vol. 31, no. 3, pp.
383-391.

Qi, H., Wang, F. (2001), Optimal itinerary analysis for mobile agents in ad hoc
wireless sensor networks, in Proc.: International Conference on Wireless
Communications.

Wu, Q., Rao, N., Barhen J., Iyengar, S., Vaishnavi, V., Qi, H., Chakrabarty, K.
(2004), On Computing Mobile Agent Routes for Data Fusion in Distributed Sensor
Networks, IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 6,
pp. 740-753.

