

A complete software application providing
automated measurements storing, monitoring and

feedback for dispersed environmental sensors.

 P. N. Christias*, A. Maitos**, E. Vogklis***

*Technical Educational Institute of Piraeus – Department of Electronics.
xristias@tee.gr

**Technical Educational Institute of Piraeus – Department of Electronics.
amaitos@teipir.gr

***Technical Educational Institute of Piraeus – Department of Electronics.
e-voglis@otenet.gr

Abstract

The present paper describes the development and the specifications of a software solution that
manages information and measurements data, concerning sensor networks. The sensors
measure environmental parameters (CO2, CO, Temperature, Humidity and Luminance) and
they are installed in geographically dispersed stations. The measurements are collected in a
personal computer or data logger installed at every station in the form of text files. A
constantly running software scheduler in the measurements PC automatically transmits these
files to a main Server via Internet. The measurements files are processed by a software
daemon in the main server, the reading values are attributed to the corresponding sensors and
finally the daemon stores the measurements information in a database. In addition, the
database is designed to hold station, sensor and data files attributes. A Microsoft WinForms
application is developed which acts as a client interface. It supports administration tasks on the
objects stored in the database. Its main feature is that all the readings per sensor, station or
environmental parameter can be monitored through the graphical interface. A separate library
is developed which produces graphs showing measurements information, according to the
preferable parameters for multiple sensors, either they belong to the same station or not.
All the software components are developed using the Microsoft’s .NET platform. DB4o, an
object-oriented database is selected to cooperate with the WinForms application and the
software daemon for data storage and retrieval. The technology of Microsoft XML Web
Services is used in order to receive the files that arrive from each environmental station to the
main server. The project is co-funded by the European Social Fund & National Resources –
EPEAEK II – ARCHIMIDIS.

Keywords: web-based applications, .NET, Web Services, environmental measurements,
sensors networks, object-oriented databases.

mailto:xristias@tee.gr
mailto:amaitos@teipir.gr
mailto:evoglis@otenet.gr

11th Panhellenic Conference in Informatics 636

1. Introduction
The case study concentrates on the management of readings, relevant data
information and metadata, regarding sensors measuring environmental parameters.
The sensors are installed in groups, at stations in various geographic locations. Each
environmental station is equipped with a personal computer (PC) / datalogger with
transmitting capabilities. They serve as a collector for the measurements data which
the sensors produce. The data coming from every station, show climatic variations
based on specific parameters. They can be used to study outdoors and indoors
environmental quality, or contribute to automated fire and flood prevention at remote
areas.

The combination and comparison of readings originating from sensors of the same
measuring type but located at different stations provide an overall image for the area’s
micro-climate.

A software application can manage all the relevant information about the
environmental stations, the sensors and measurements in a database. A main server
hosts the Web services and the database.

The measurements are stored by group in data files inside the station’s PC. They are
produced by the data loggers to which each sensor is connected. A software
mechanism is implemented to automatically send all the data files to the main server.
Data is transmitted between the stations PCs and the main server which can be
interconnected via a LAN or a WAN. The transmission software module is installed
in every station’s PC and performs a daily check on the accumulated data files. In
case the environmental station is remotely located, the PC automatically connects to
the internet and establishes communication with the main server. The files are sent in
the form of binary stream and after a successful transmission the PC automatically
disconnects from the internet.

For the purpose of serving multiple requests for file transmissions a .NET Web
Service is developed which resides in the IIS Web Server, currently installed on the
main server machine. The Web Service receives the transmission attempts and the
data files as advanced web requests. The measurements files are stored on the main
server’s hard disk for the total number of the registered stations.

A Windows Service which resides in the main server is designed to constantly check
for newly received files from the web service. Each newly arrived file is passed as
input argument to a custom method for processing. The processing separates the
measurements values and corresponding timestamps for every sensor whose readings
are included in the data file. This information is then automatically inserted in the
database.

Web Applications 637

The data related to the physical network of environmental stations is administrated
through a graphical user interface. It is a WinForms application from which all the
operations in the database are dynamically performed:

1. Administration of the data attributes for the registered environmental stations.
2. Administration of the data attributes for the installed sensors in every station.
3. View of recorded readings filtered by sensor and timestamp.
4. Management of the measurements files which are sent to the main server by

each environmental station. The number of columns contained inside the
files, the type of data they represent and the values format can be edited.

In addition, a class library was developed for generating custom graphs. Using this
feature, multiple sensor readings of one or more environmental parameters are
graphically plotted in the same chart, presenting the measurements values for user
selected time periods. In the following section, there is an overall description of the
parts and functions of the entire application. In sections 3, 4 and 5, implementation
issues of the application, the database and the interface are covered in detail. At the
end, future approaches and conclusions are discussed.

2. Functionality Issues
The architecture of the proposed solution follows the multi-tier software design
[MSDN]. The advantages are enhanced maintainability and scalability. Functionality,
components and code are divided into separate tiers. The structural pattern of the
application is shown in Fig. 1. The data loggers in every environmental station
produce measurements files which are stored as digital files in the station PC‘s hard
disk. The software method which is embedded in the business logic layer and is used
to receive these files must be invoked. In case the main server is not reachable via a
local area network, the file reception method can be invoked by the Web Service
running on the main server. The station’s PC automatically establishes connection to
the Internet and performs a request to the Web Service. After the files are transmitted
it disconnects. A running Windows service has the task of processing all new data
files, regardless of the time they arrived. The extracted measurements information is
automatically inserted in the database via the aforementioned service. The graphical
interface enables management of the properties and measurements data for the
stations and sensors.

11th Panhellenic Conference in Informatics 638

Figure 1. The structure used for the proposed software application.

3. The Business Logic Layer

3.1 General
The business logic layer contains all the class libraries which implement the logical
and programmatic operations as well as the communication with other tiers and
components, which are the database and the client components. Inside the business
logic namespace the following parts are included:

1. The class definitions describing the entities of the physical model.
2. The Factory classes which are dedicated in implementing every operation on

the objects above.

Web Applications 639

3. Classes that implement collections (groups of many object instances) of the
custom objects.

4. A class library that encapsulates the parameters that must be available as
options or choices to the user of the interface. The parameters are grouped in
strongly-typed structures and enumerations.

3.2 Custom Objects and Factories
Above every object that is defined in a class in the software package, a prime object
exists on top of the class hierarchy called BusinessObject. All the objects defined in
the solution object model, inherit from the above base class and constitute the custom
objects set. Following this design pattern [Gamma et. Al (1995)] the leverage of
abstractness is achieved, while overall extensibility is enhanced. At this time the main
custom classes that define the required entities for the object model are:

1. Station
2. Sensor
3. SensorMeasurement
4. MeasurementsFile

A detailed description of the attributes for the solution’s objects is in Table 1.

The only attributes that are declared inside the BusinessObject class are
timeOfCreation and timeStamp.They represent the time when the object was created
and the time when some attribute of the object was changed and stored again in the
database respectively. Except for the constructor methods which instantiate an object,
no method which operates on the database and communicates with any form of client
is declared inside a custom object’s class definition. Separate classes called Factories
contain all the method declarations for the object they represent [Gamma et. Al.
(1995)]. That is, a Factory class exists for the BusinessObject class
(BusinessObjectFactory) and for every child class. Factory classes contain static
declarations of methods, so no instance of them is necessary in order to be called.
They follow the exact inheritance schema of the custom objects. The operational
separation of objects caused by the use of Factory classes provides controlled
restriction as far the client layer is concerned. The client is only permitted to have
object type declarations inside its code and is only permitted to call the Factory static
methods for the object type that is referencing. The responsibility for the proper
instantiation of objects and returning properly built objects as well as collections of
them is assigned to the business logic layer. Another advantage is that the separation
of execution members (methods) from their original class definition is very useful for
the object database. The reason is that only data related members (attributes) are used
for storage. The usefulness of inheritance though, is highly exposed when used in
conjunction with Delegates and the new feature of the .NET Framework 2.0, Generics
[MSDN].

11th Panhellenic Conference in Informatics 640

Table 1. Members list for all Entities

ENTITIES Station Sensor SensorMeasu
rement Measurements file

name name measurement
DateTime filename

measurementsFiles
FolderName (The

desired folder name
for hard disk

storage)

serialNumber measurement
Value

lineDataBegin
(the line in file

where
measurements data

begin)

Description description sensorName
dateColumnNumber
(the column where

date is marked)

address

parameterMeasured
(CO,

CO2,Temperature,et
c)

timeColumnNumber
(the column where

time is marked)

location Units (ppm,
Celcius, etc) totalColumnNumber

isActive (flag
declaring whether

the station is
operational)

primaryDigits (The
number of the

measurement values
decimal digits

which are used for
calculations)

errorString
(the literal

specifyingerroneous
values in the file)

isActive (flag
declaring whether

the sensor is
operational)

dateTime Format

(the format in which
dateime is provided)

ATTRIBU
TES

 decimalSeparator
(the character which
is uded as decimal

separator in
measurement

values)

Delegates work the same way as function pointers. They behave as data structures
that refer to a static method or to a class instance and an instance method of that class.
When a call to the delegate happens, the method passed as input argument is
executed. The Object Database API for C# operates on stored objects with exposed
delegates that accept methods as input arguments. With the use of a delegate the type

Web Applications 641

of operation such as insert, update, delete or retrieve is predefined along with the total
number and the types of input arguments and the expected return type. Although the
signature of the method to supply the delegate input argument is predefined, a
restriction exists on the specified data types of input and output. The use of Generics
overcomes this restriction. Any type of a custom object can be passed as input
arguments or declared as return type. This eliminates the burden of rewriting the same
methods which perform the same operations, for each different object at a time. The
total gains are generalization of input and specialization in operation at the same time:

1. The methods for the main operations on the database are written only once
and they are isolated in the BusinessObjectFactory class, maximizing
reusability, safety and performance.

2. The above can be executed for any object type in the solution performing any
set of instructions on the different attributes of that object.

Along with the Factory classes, Collection classes are developed for every custom
object beginning from BusinessObject. They are structured in an inheritance tree with
BusinessObjectCollection being the base collection class. The
BusinessObjectCollection implements the .NET Framework’s IList <T> interface.
The purpose of the Collection classes is to provide strongly-typed collections for
groups of custom objects instances. At the time when the client makes a call to a
custom’s object Factory method, it uses the BusinessObjectFactory corresponding
method by passing the specific – specially designed for that custom object – delegate
for execution. In the case the return value is a collection of custom objects, the correct
casting is applied. This is necessary because the Query() method for example, returns
an IList <T>. Although at run-time the custom objects type is viewable, in order for
the items in the collection to be treated by the client as objects of the specific type,
they must be transferred from the collection of <T> to a new strongly-typed
collection. That is the reason why a Collection class is built for every custom object.
The client is permitted to declare custom objects Collections which are instantiated by
the return values of the Factory methods. At client-side any processing is possible on
each item of the collection. Moreover, every processed collection can be provided
back as input argument to a different Factory method.

3.3 Web Service
XML Web Services provide functionality to Web users through a standard Web
protocol. In most cases, the protocol used is Simple Object Access Protocol (SOAP)
[Short (2002)]. SOAP is the communications protocol for XML Web services. It is a
specification that defines the XML format for messages. Web services provide a way
to describe their interfaces in enough detail to allow a user to build a client
application to talk to them. This description is usually provided in an XML document
called a Web Services Description Language (WSDL) document. One of the primary
advantages of the XML Web services architecture is that it allows programs written in

11th Panhellenic Conference in Informatics 642

different languages on different platforms to communicate with each other in a
standards-based way. The web service behaves like a common method. It has input
arguments and return value. Furthermore, it is exposed for use on the Web through a
URL. The solution’s Web Service accepts as input arguments, the filename and the
byte array of the file being sent. When the file is successfully received by the web
service − this is verified by checking the byte array length before and after
transmission − the file is recomposed to its original text format using the byte array.
A Boolean true value is sent back verifying successful reception. Data exchange using
a file or binary stream is not supported for Web Services. Methods are developed for
this data exchange, which decompose the files into byte arrays and recompose them
back again after reception.

The benefits the Web Services technology offers are:
1. Information can be exchanged in XML, one of the most widely used

protocols.
2. Feedback can by supplied to the environmental stations because web services

provide return values.
3. The use of Web Services allows the multi-user and portable expansion of the

solution.
4. The extension of the client layer to a web application is easier achieved.

Those benefits will be analyzed in section 5.

3.4 Automated Tasks
The processing of the measurements files on the server and their transmission from
the station’s PC are operations executed at periodic time intervals. The methods
which process the data files are embedded in a Windows Service module. This means
the processing task runs repeatedly using the kernel resources as a daemon in a
separate system process. The time interval specifying the check frequency on newly
arrived files is a configurable parameter and can be altered by the server’s
administrator in the configuration file of the Windows service (subsection 3.5).

The measurements files transmission operations are included in a standalone package
which executes as a scheduled task on the stations PCs. It makes use of the
‘wininet.dll’ library deriving from the earliest versions of Microsoft Windows. The
library’s unmanaged methods are called from inside the .NET code to establish,
monitor and disconnect an internet connection.

4. The Implementation of the Database

4.1 Technology Description
The database management system (DBMS) is decided to be DB4O an object-oriented
Database. Object oriented databases are also called Object Database Management

Web Applications 643

Systems (ODBMS). Object databases store objects rather than data such as integers,
strings or real numbers. An ODBMS makes database objects appear as programming
language objects in one or more object programming languages. With traditional
databases, data manipulated by the application is transient and data in the database is
persisted (Stored on a permanent storage device). Native SQL access is fast, but
laborious, requiring a great deal of additional code [Kim, Won (1990)]. The most
common approach is custom object-relational mappers which offer a convenient
bridge, but they seriously degrade performance. In object databases, the application
can manipulate both transient and persisted data. The main advantages and
disadvantages of object databases compared to relational are:

Advantages:
• Better concurrency control - A hierarchy of objects may be locked.
• Data model is based on the real world.
• Works well for distributed architectures.
• Less code required when applications are object oriented.

Disadvantages:
• Relational tables are simpler.
• Standards for RDMS are more stable.
• Support for RDBMS is more certain and change is less likely to be required.

The unique design of db4o's native object database engine makes it the ideal choice to
be embedded in equipment and devices, in packaged software running on mobile or
desktop platforms, or in real-time control systems [DB4o Specs.]. It can be embedded
in Java and .NET environments, where no Database Administrator is present. It
provides cross-platform portability that liberates users from proprietary vendors' high
licensing fees. The major reason for using relational databases today is legacy, i.e.
retaining old enterprise data and the set of existing applications relying on it. Db4o is
the first to implement Native Queries (NQ). Native Queries lead the industry trend to
provide database querying with programming language semantics, validated by
Microsoft's LINQ (.NET Language Integrated Queries) project [MSDN]. NQs allow
developers to simply use the programming language itself (e.g., Java, C#) to access
the database and thus avoid a constant, productivity-reducing context switch between
programming language and data access API. Native Queries eliminate all strings from
queries. They are a hundred per cent type-safe, object-oriented and refactorable.
Errors by the data access code are not thrown until execution. NQs do not accept
type-mismatched queries in the first place. Db4o's object-oriented replication (dRS)
functionality allows for easy synchronization of data between db4o databases. Objects
are stored natively, eliminating the added complexity and performance drain of
conversion to other formats such as SQL. Sessions and transactions on data are
supported.

11th Panhellenic Conference in Informatics 644

4.2 Architectural Design
Regarding the architectural aspect, a centralized design is decided for the data
repository as shown in Fig. 1. All the data are stored in a single database which
resides in the main server machine. The measurements data are stored in the same
database. Another architectural scenario is shown in Fig. 2. A separate database is
maintained in every environmental station. The measurements files are processed by
the site’s PC and stored in the station’s database. The user interface specifications
require that every station’s data is available for combining and viewing together
measurements from different sensors in different stations. This architectural scenario
puts a restriction because the network connection of the main server with the stations
PCs is not always permanent and is very slow in the case of dialup. The acquisition of
data each time for a combined request is time-costly and unreliable since a dialup
connection is needed to be established. These are the reasons why this design scenario
is set aside. In the selected design, the connection is made only once, that is when the
station is ready to transmit its measurements data.

Figure 2. Separate Databases Architecture

Web Applications 645

5. The User Interface

5.1 General Description
A graphical interface is available as a means for administering and using the
measurements information. It is a WinForms application and the functionality it
offers to the end user is:

• Registering, editing and deleting environmental stations and sensors.
• Viewing measurements values in number format and combined graphs.
• Management of the measurements files each station produces.

The main screen tab (Fig. 3) concentrates the majority of operations. Two grid tables
display the data for all the registered stations and their sensors. Depending on the
station selection the sensor table is automatically populated. The stations and sensors
data elements are initially filled in by the Administrator with the help of graphical
forms. By highlighting a sensor and pressing the View Sensor Measurements button,
the user is redirected to the measurements tab. The selected sensor’s measurements
can be filtered by date and analytically displayed.

Figure 3. Main Screen of the Interface

The most important feature of the interface is the dynamic building of graphs. The
graphs are produced by a custom developed class library based on the respective
libraries of the .NET Framework. The graphs plot sensor measurements for the
selected time window. As with every operation of the interface, the database is used

11th Panhellenic Conference in Informatics 646

to retrieve the requested data. The library can display in the same graph curves for
multiple sensors of different measuring kinds. Specifically, it supports up to five
sensors and two environment parameters plotted in two verticals axis. At run-time,
the climaxes for the vertical and horizontal axis are calculated depending on the
values to be displayed and the whole graph is built dynamically (Fig. 4).

Figure 4. Dynamic Graph Plot

6. Forthcoming Expansions and Objectives
The application in its current state allows administration and measurements viewing
from a single location, the main server’s machine terminal screen. Despite the fact
this is adequate for the time being, it is probable that future requirements will arise.
The most expected requirement is multiple users requesting simultaneously
measurements information. Besides that, the more stations and sensors will be
registered in the database, the higher the necessity will be for stricter administrative
barriers and access rules. Each station or perhaps a group of stations might have
different measuring purposes, thus requiring different administrator and user
accounts. This problem is solved by creating a web portal which offers the same
functionality as the WinForms application, plus security access control. Viewing

Web Applications 647

multiple measurements from different locations will be treated as different web
requests.

The development of the website using the ASP.NET class libraries is relatively easy,
because:

• They have many similarities with the WinForms libraries.
• The information exchange and processing are performed via calls to the

Factory custom methods; therefore no extra development concerning the
logic body has to be done.

In addition, the proposed architectural design and the specific selection of
technologies for the solution’s software and database components are chosen in order
to support the following scenario. As mentioned in the introduction, the objective
after observing the measurements for a given station or a group of sensors is to
provide feedback to the environmental stations. The metadata extracted to define the
feedback actions will be produced by an algorithm executed on the stored
measurements. The feedback can have the form of providing different operation
signals to devices which are installed on site. Considering the fact that the application
can be extended to monitoring outdoors and indoors environmental factors, signals
can be sent to start up or shut down a heating boiler, or a heat pump/air conditioning
device as well as and ventilation equipment. The devices will receive signals via a
hardware interface with the help of the station’s PC. Their functionality will be
controlled by an internal PCI card, the serial port, or an intermediate controller which
is connected to the PC and translates signals to operating functions. The .NET
components have the ability to communicate with the hardware interfaces and pass
the appropriate signals depending on the commands the code instructs. The problem
that eventually arises is how the feedback messages will reach the stations. This
problem gets even more complex when the proposed application is required to offer
the same functionality for deployment on mobile devices. From an operational and
practical perspective it would be ideal if the administration, measurements monitoring
and feedback could be performed not only from a desktop client, but also from a
portable computer, a handheld PC or a PDA. For that kind of approach, the portable
devices must operate as detached mini client machines (Fig. 5). The user interface is
easily transferred to the mobile platforms by creating executable files under the
Microsoft’s Compact .NET Framework. It is a special variant of the .NET Framework
designed specifically for devices with Windows mobile editions installations.

11th Panhellenic Conference in Informatics 648

Figure 5. Web Based Architecture

What is most importantly needed is the implementation of a feedback mechanism
operating similarly with conventional as well as portable platforms. Any platform
supporting information exchange using the XML protocol is capable of providing
feedback to the stations and receiving measurements data from them, under the
proposed solution. Platform interoperability and communication among different
software components by means of XML is perhaps the Web Services technology
major advantage.

2. Discussion and Conclusions
The value of the developed software application lies not only to the functions it
offers. Easy maintenance and platform independence are important parameters

Web Applications 649

implemented. The application is destined to gather measurements data, monitor and
provide feedback for remote sensor networks, provided that an internet connection is
available. The choice of Web Services Technology and DB4O, gives the ability to
host the entire server on a Linux machine. This can be achieved by using the Mono
environment (an open source framework to develop .NET applications) since DB4O
also runs on Linux [MONO]. The cost of the solution drops to minimum, providing
access to conventional or mobile clients.

References
DB4o. Product Information & Specifications. http://www.db4o.com
Gamma, Helm, Johnson, Vlissides. (1995). Design Patterns.Elements of Reusable

Object-Oriented Software. Addison Wesley.
Kim, Won. (1990)Introduction to Object-Oriented Databases. The MIT Press.
MSDN. The Microsoft Developer Network. http://msdn.microsoft.com
MONO Project. http://mono-project.com
Short S. (2002).Building XML Web Services for the Microsoft .NET Platform.

Microsoft Press.

http://www.db4o.com/
http://msdn.microsoft.com/
http://mono-project.com/

